21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved Visualization of Intracranial Vessels with Intraoperative Coregistration of Rotational Digital Subtraction Angiography and Intraoperative 3D Ultrasound

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference.

          Methods

          We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment.

          Results

          Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient).

          Conclusions

          Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative rotational digital subtraction angiography.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries.

          In this report the authors describe a noninvasive transcranial method of determining the flow velocities in the basal cerebral arteries. Placement of the probe of a range-gated ultrasound Doppler instrument in the temporal area just above the zygomatic arch allowed the velocities in the middle cerebral artery (MCA) to be determined from the Doppler signals. The flow velocities in the proximal anterior (ACA) and posterior (PCA) cerebral arteries were also recorded at steady state and during test compression of the common carotid arteries. An investigation of 50 healthy subjects by this transcranial Doppler method revealed that the velocity in the MCA, ACA, and PCA was 62 +/- 12, 51 +/0 12, and 44 +/- 11 cm/sec, respectively. This method is of particular value for the detection of vasospasm following subarachnoid hemorrhage and for evaluating the cerebral circulation in occlusive disease of the carotid and vertebral arteries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Engineering and algorithm design for an image processing Api: a technical report on ITK--the Insight Toolkit.

            We present the detailed planning and execution of the Insight Toolkit (ITK), an application programmers interface (API) for the segmentation and registration of medical image data. This public resource has been developed through the NLM Visible Human Project, and is in beta test as an open-source software offering under cost-free licensing. The toolkit concentrates on 3D medical data segmentation and registration algorithms, multimodal and multiresolution capabilities, and portable platform independent support for Windows, Linux/Unix systems. This toolkit was built using current practices in software engineering. Specifically, we embraced the concept of generic programming during the development of these tools, working extensively with C++ templates and the freedom and flexibility they allow. Software development tools for distributed consortium-based code development have been created and are also publicly available. We discuss our assumptions, design decisions, and some lessons learned.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model.

              We present a new algorithm for the nonrigid registration of three-dimensional magnetic resonance (MR) intraoperative image sequences showing brain shift. The algorithm tracks key surfaces of objects (cortical surface and the lateral ventricles) in the image sequence using a deformable surface matching algorithm. The volumetric deformation field of the objects is then inferred from the displacements at the boundary surfaces using a linear elastic biomechanical finite-element model. Two experiments on synthetic image sequences are presented, as well as an initial experiment on intraoperative MR images showing brain shift. The results of the registration algorithm show a good correlation of the internal brain structures after deformation, and a good capability of measuring surface as well as subsurface shift. We measured distances between landmarks in the deformed initial image and the corresponding landmarks in the target scan. Cortical surface shifts of up to 10 mm and subsurface shifts of up to 6 mm were recovered with an accuracy of 1 mm or less and 3 mm or less respectively.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                24 March 2015
                2015
                : 10
                : 3
                : e0121345
                Affiliations
                [1 ]Department of Neurosurgery, Dresden University of Technology, Carl Gustav Carus Faculty of Medicine, Dresden, Germany
                [2 ]Institute of Biomedical Engineering, Dresden University of Technology, Faculty of Electrical Engineering and Information Technology, Dresden, Germany
                Heinrich-Heine University, GERMANY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DP TM UM GS MK. Performed the experiments: DP TM MK. Analyzed the data: DP TM MK. Contributed reagents/materials/analysis tools: DP TM UM MK. Wrote the paper: DP TM MK.

                Article
                PONE-D-14-34713
                10.1371/journal.pone.0121345
                4372211
                25803318
                3c0653b5-98b8-476e-b974-30658be51195
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 2 August 2014
                : 15 January 2015
                Page count
                Figures: 6, Tables: 2, Pages: 16
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article