183
views
0
recommends
+1 Recommend
0 collections
    12
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The transcriptome of retinal Müller glial cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Müller glial cells are the major type of glia in the mammalian retina. To identify the molecular machinery that defines Müller glial cell identity and function, single cell gene expression profiling was performed on Affymetrix microarrays. Identification of a cluster of genes expressed at high levels suggests a Müller glia core transcriptome, which likely underlies many of the functions of Müller glia. Expression of components of the cell cycle machinery and the Notch pathway, as well as of growth factors, chemokines, and lipoproteins might allow communication between Müller glial cells and the neurons that they support, including modulation of neuronal activity. This approach revealed a set of transcripts that were not previously characterized in (Müller) glia; validation of the expression of some of these genes was performed by in situ hybridization. Genes expressed exclusively by Müller glia were identified as novel markers. In addition, a novel BAC transgenic mouse that expresses Cre in Müller glia cells was generated. The molecular fingerprint of Müller glia provides a foundation for further studies of Müller glia development and function in normal and diseased states.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Cluster analysis and display of genome-wide expression patterns.

          A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage.

            The developmental origin of oligodendrocyte progenitors (OLPs) in the forebrain has been controversial. We now show, by Cre-lox fate mapping in transgenic mice, that the first OLPs originate in the medial ganglionic eminence (MGE) and anterior entopeduncular area (AEP) in the ventral forebrain. From there, they populate the entire embryonic telencephalon including the cerebral cortex before being joined by a second wave of OLPs from the lateral and/or caudal ganglionic eminences (LGE and CGE). Finally, a third wave arises within the postnatal cortex. When any one population is destroyed at source by the targeted expression of diphtheria toxin, the remaining cells take over and the mice survive and behave normally, with a normal complement of oligodendrocytes and myelin. Thus, functionally redundant populations of OLPs compete for space in the developing brain. Notably, the embryonic MGE- and AEP-derived population is eliminated during postnatal life, raising questions about the nature and purpose of the competition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electroporation and RNA interference in the rodent retina in vivo and in vitro.

              The large number of candidate genes made available by comprehensive genome analysis requires that relatively rapid techniques for the study of function be developed. Here, we report a rapid and convenient electroporation method for both gain- and loss-of-function studies in vivo and in vitro in the rodent retina. Plasmid DNA directly injected into the subretinal space of neonatal rodent pups was taken up by a significant fraction of exposed cells after several pulses of high voltage. With this technique, GFP expression vectors were efficiently transfected into retinal cells with little damage to the operated pups. Transfected GFP allowed clear visualization of cell morphologies, and the expression persisted for at least 50 days. DNA-based RNA interference vectors directed against two transcription factors important in photoreceptor development led to photoreceptor phenotypes similar to those of the corresponding knockout mice. Reporter constructs carrying retinal cell type-specific promoters were readily introduced into the retina in vivo, where they exhibited the appropriate expression patterns. Plasmid DNA was also efficiently transfected into retinal explants in vitro by high-voltage pulses.
                Bookmark

                Author and article information

                Journal
                J Comp Neurol
                cne
                The Journal of Comparative Neurology
                Wiley Subscription Services, Inc., A Wiley Company
                0021-9967
                1096-9861
                10 July 2008
                : 509
                : 2
                : 225-238
                Affiliations
                [1 ]Department of Genetics, Harvard Medical School Boston, Massachusetts 02115
                [2 ]Howard Hughes Medical Institute Boston, Massachusetts 02115
                [3 ]Friedrich Miescher Institute for Biomedical Research 4058 Basel, Switzerland
                [4 ]Canaccord Adams Boston, Massachusetts 02110
                Author notes
                * Correspondence to: Constance L. Cepko, Department of Genetics, Harvard Medical School, and Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115. E-mail: cepko@ 123456genetics.med.harvard.edu
                Article
                10.1002/cne.21730
                2665263
                18465787
                3ade43cc-aa26-4a6d-99ea-6740ac23e11c
                Copyright © 2008 Wiley-Liss, Inc., A Wiley Company

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 12 October 2007
                : 08 January 2008
                : 20 March 2008
                Categories
                Article

                Neurology
                molecular markers,müller glia,transcriptome,bac transgenic mouse,murine retina,microarray
                Neurology
                molecular markers, müller glia, transcriptome, bac transgenic mouse, murine retina, microarray

                Comments

                Comment on this article