11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prevalence of cerebrovascular disease increases with age, placing the elderly at a greater lifetime risk for dementia. Vascular cognitive impairment (VCI) encompasses a spectrum of cognitive deficits from mild cognitive impairment to dementia. VCI and its most severe form, vascular dementia (VaD), is becoming a major public health concern worldwide. As growing efforts are being taken to understand VCI and VaD in animal models and humans, the pathogenesis of the disease is being actively explored. It is postulated that chronic cerebral hypoperfusion (CCH) is a major cause of VCI. CCH activates a molecular and cellular injury cascade that leads to breakdown of the blood brain barrier (BBB) and neurodegeneration. The BBB tightly regulates the movement of substances between the blood and the brain, thereby regulating the microenvironment within the brain parenchyma. Here we illustrate how BBB damage is causal in the pathogenesis of VCI through the increased activation of pathways related to excitotoxicity, oxidative stress, inflammation and matrix metalloproteinases that lead to downstream perivascular damage, leukocyte infiltration and white matter changes in the brain. Thus, CCH-induced BBB damage may initiate and contribute to a vicious cycle, resulting in progressive neuropathological changes of VCI in the brain. This review outlines the molecular and cellular mechanisms that govern BBB breakdown during CCH and highlights the clinical evidence in identifying at-risk VCI patients.

          Related collections

          Most cited references239

          • Record: found
          • Abstract: found
          • Article: not found

          The blood-brain barrier.

          Blood vessels are critical to deliver oxygen and nutrients to all of the tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier, which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and also protects the neural tissue from toxins and pathogens, and alterations of these barrier properties are an important component of pathology and progression of different neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the endothelial cells (ECs) that form the walls of the blood vessels, and these properties are regulated by interactions with different vascular, immune, and neural cells. Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges.

            The term cerebral small vessel disease refers to a group of pathological processes with various aetiologies that affect the small arteries, arterioles, venules, and capillaries of the brain. Age-related and hypertension-related small vessel diseases and cerebral amyloid angiopathy are the most common forms. The consequences of small vessel disease on the brain parenchyma are mainly lesions located in the subcortical structures such as lacunar infarcts, white matter lesions, large haemorrhages, and microbleeds. Because lacunar infarcts and white matter lesions are easily detected by neuroimaging, whereas small vessels are not, the term small vessel disease is frequently used to describe the parenchyma lesions rather than the underlying small vessel alterations. This classification, however, restricts the definition of small vessel disease to ischaemic lesions and might be misleading. Small vessel disease has an important role in cerebrovascular disease and is a leading cause of cognitive decline and functional loss in the elderly. Small vessel disease should be a main target for preventive and treatment strategies, but all types of presentation and complications should be taken into account. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association.

              This scientific statement provides an overview of the evidence on vascular contributions to cognitive impairment and dementia. Vascular contributions to cognitive impairment and dementia of later life are common. Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and pathophysiological aspects, role of neuroimaging and vascular and other associated risk factors, and potential opportunities for prevention and treatment are reviewed. This statement serves as an overall guide for practitioners to gain a better understanding of VCI and dementia, prevention, and treatment. Writing group members were nominated by the writing group co-chairs on the basis of their previous work in relevant topic areas and were approved by the American Heart Association Stroke Council Scientific Statement Oversight Committee, the Council on Epidemiology and Prevention, and the Manuscript Oversight Committee. The writing group used systematic literature reviews (primarily covering publications from 1990 to May 1, 2010), previously published guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and, when appropriate, formulate recommendations using standard American Heart Association criteria. All members of the writing group had the opportunity to comment on the recommendations and approved the final version of this document. After peer review by the American Heart Association, as well as review by the Stroke Council leadership, Council on Epidemiology and Prevention Council, and Scientific Statements Oversight Committee, the statement was approved by the American Heart Association Science Advisory and Coordinating Committee. The construct of VCI has been introduced to capture the entire spectrum of cognitive disorders associated with all forms of cerebral vascular brain injury-not solely stroke-ranging from mild cognitive impairment through fully developed dementia. Dysfunction of the neurovascular unit and mechanisms regulating cerebral blood flow are likely to be important components of the pathophysiological processes underlying VCI. Cerebral amyloid angiopathy is emerging as an important marker of risk for Alzheimer disease, microinfarction, microhemorrhage and macrohemorrhage of the brain, and VCI. The neuropathology of cognitive impairment in later life is often a mixture of Alzheimer disease and microvascular brain damage, which may overlap and synergize to heighten the risk of cognitive impairment. In this regard, magnetic resonance imaging and other neuroimaging techniques play an important role in the definition and detection of VCI and provide evidence that subcortical forms of VCI with white matter hyperintensities and small deep infarcts are common. In many cases, risk markers for VCI are the same as traditional risk factors for stroke. These risks may include but are not limited to atrial fibrillation, hypertension, diabetes mellitus, and hypercholesterolemia. Furthermore, these same vascular risk factors may be risk markers for Alzheimer disease. Carotid intimal-medial thickness and arterial stiffness are emerging as markers of arterial aging and may serve as risk markers for VCI. Currently, no specific treatments for VCI have been approved by the US Food and Drug Administration. However, detection and control of the traditional risk factors for stroke and cardiovascular disease may be effective in the prevention of VCI, even in older people. Vascular contributions to cognitive impairment and dementia are important. Understanding of VCI has evolved substantially in recent years, based on preclinical, neuropathologic, neuroimaging, physiological, and epidemiological studies. Transdisciplinary, translational, and transactional approaches are recommended to further our understanding of this entity and to better characterize its neuropsychological profile. There is a need for prospective, quantitative, clinical-pathological-neuroimaging studies to improve knowledge of the pathological basis of neuroimaging change and the complex interplay between vascular and Alzheimer disease pathologies in the evolution of clinical VCI and Alzheimer disease. Long-term vascular risk marker interventional studies beginning as early as midlife may be required to prevent or postpone the onset of VCI and Alzheimer disease. Studies of intensive reduction of vascular risk factors in high-risk groups are another important avenue of research.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2022
                16 January 2022
                : 12
                : 4
                : 1639-1658
                Affiliations
                [1 ]Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
                [2 ]Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
                [3 ]Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
                [4 ]Centre for Healthy Longevity, National University Health System (NUHS), Singapore
                [5 ]Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
                [6 ]School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
                Author notes
                ✉ Corresponding author: Thiruma V. Arumugam, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia. E-mail: g.arumugam@ 123456latrobe.edu.au

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov12p1639
                10.7150/thno.68304
                8825579
                35198062
                3a459b83-226a-4c14-8baa-97045ed017e5
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 21 October 2021
                : 3 January 2022
                Categories
                Review

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article