26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ginseng: A dietary supplement as immune-modulator in various diseases

      , , , ,
      Trends in Food Science & Technology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references227

          • Record: found
          • Abstract: found
          • Article: not found

          Panax ginseng and Panax quinquefolius : From pharmacology to toxicology

          The use of Panax ginseng and Panax quinquefolius in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Over the past few years, extensive preclinical and clinical evidence in the scientific literature worldwide has supported the beneficial effects of P. ginseng and P. quinquefolius in significant central nervous system, metabolic, infectious and neoplastic diseases. There has been growing research on ginseng because of its favorable pharmacokinetics, including the intestinal biotransformation which is responsible for the processing of ginsenosides - contained in the roots or extracts of ginseng - into metabolites with high pharmacological activity and how such principles act on numerous cell targets. The aim of this review is to provide a simple and extensive overview of the pharmacokinetics and pharmacodynamics of P. ginseng and P. quinquefolius, focusing on the clinical evidence which has shown particular effectiveness in specific diseases, such as dementia, diabetes mellitus, respiratory infections, and cancer. Furthermore, the review will also provide data on toxicological factors to support the favorable safety profile of these medicinal plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.).

            Ginseng, Panax ginseng (C. A. Mey.), is a well-known Chinese traditional medicine in the Far East and has gained popularity in the West during the last decade. There is extensive literature on the chemical constituents and bioactivities of ginseng. In this paper we compiled the chemical constituents isolated and detected from ginseng including polysaccharides, ginsenosides, peptides, polyacetylenic alcohols, fatty acids, etc. Meanwhile we summarized the biological activities of ginseng, which have been reported over the past few decades, including: anti-aging activity, anti-diabetic activity, immunoregulatory activity, anti-cancer activity, neuroregulation activity, wound and ulcer healing activity, etc. Nevertheless, further studies to exploit other kinds of constituents and new biological activities of ginseng are still necessary to facilitate research and development in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation--the key step of inflammation.

              In the preliminary study, ginsenoside Rb1, a main constituent of the root of Panax ginseng (family Araliaceae), and its metabolite compound K inhibited a key factor of inflammation, nuclear transcription factor κB (NF-κB) activation, in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. When ginsenoside Rb1 or compound K were orally administered to 2,4,6-trinitrobenzene sulfuric acid (TNBS)-induced colitic mice, these agents inhibited colon shortening, macroscopic score, and colonic thickening. Furthermore, treatment with ginsenoside Rb1 or compound K at 20mg/kg inhibited colonic myeloperoxidase activity by 84% and 88%, respectively, as compared with TNBS alone (p<0.05), and also potently inhibited the expression of tumor necrosis factor-α, interleukin (IL)-1β and IL-6, but increased the expression of IL-10. Both ginsenoside Rb1 and compound K blocked the TNBS-induced expressions of COX-2 and iNOS and the activation of NF-κB in mice. When ginsenoside Rb1 or compound K was treated in LPS-induced murine peritoneal macrophages, these agents potently inhibited the expression of the proinflammatory cytokines. Ginsenoside Rb1 and compound K also significantly inhibited the activation of interleukin-1 receptor-associated kinase-1 (IRAK-1), IKK-β, NF-κB, and MAP kinases (ERK, JNK, and p-38); however, interaction between LPS and Toll-like receptor-4, IRAK-4 activation and IRAK-2 activation were unaffected. Furthermore, compound K inhibited the production of proinflammatory cytokines more potently than did those of ginsenoside Rb1. On the basis of these findings, ginsenosides, particularly compounds K, could be used to treat inflammatory diseases, such as colitis, by targeting IRAK-1 activation. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Trends in Food Science & Technology
                Trends in Food Science & Technology
                Elsevier BV
                09242244
                January 2019
                January 2019
                : 83
                : 12-30
                Article
                10.1016/j.tifs.2018.11.008
                36d8b514-67a2-4fa4-a767-bf50a76c0237
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article