27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biochemistry of Terpenes and Recent Advances in Plant Protection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biodiversity is adversely affected by the growing levels of synthetic chemicals released into the environment due to agricultural activities. This has been the driving force for embracing sustainable agriculture. Plant secondary metabolites offer promising alternatives for protecting plants against microbes, feeding herbivores, and weeds. Terpenes are the largest among PSMs and have been extensively studied for their potential as antimicrobial, insecticidal, and weed control agents. They also attract natural enemies of pests and beneficial insects, such as pollinators and dispersers. However, most of these research findings are shelved and fail to pass beyond the laboratory and greenhouse stages. This review provides an overview of terpenes, types, biosynthesis, and their roles in protecting plants against microbial pathogens, insect pests, and weeds to rekindle the debate on using terpenes for the development of environmentally friendly biopesticides and herbicides.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          Plant immunity: towards an integrated view of plant-pathogen interactions.

          Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant-pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biosynthesis, function and metabolic engineering of plant volatile organic compounds.

            Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phytoalexins in defense against pathogens.

              Plants use an intricate defense system against pests and pathogens, including the production of low molecular mass secondary metabolites with antimicrobial activity, which are synthesized de novo after stress and are collectively known as phytoalexins. In this review, we focus on the biosynthesis and regulation of camalexin, and its role in plant defense. In addition, we detail some of the phytoalexins produced by a range of crop plants from Brassicaceae, Fabaceae, Solanaceae, Vitaceae and Poaceae. This includes the very recently identified kauralexins and zealexins produced by maize, and the biosynthesis and regulation of phytoalexins produced by rice. Molecular approaches are helping to unravel some of the mechanisms and reveal the complexity of these bioactive compounds, including phytoalexin action and metabolism. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                27 May 2021
                June 2021
                : 22
                : 11
                : 5710
                Affiliations
                State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (IPP_CAAS), Beijing 100193, China; 2019y90100111@ 123456caas.cn (V.N.); zhanglin42@ 123456163.com (L.Z.); jianpei_yan@ 123456foxmail.com (J.Y.); 82101185105@ 123456caas.cn (Z.F.); yangtengfeng123@ 123456163.com (T.Y.)
                Author notes
                [* ]Correspondence: zenghongmei@ 123456caas.cn ; Tel.: +86-10-82109562
                Author information
                https://orcid.org/0000-0002-2418-5113
                Article
                ijms-22-05710
                10.3390/ijms22115710
                8199371
                34071919
                35694d78-16d4-472e-8c4e-2ce4176df2c7
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 30 April 2021
                : 24 May 2021
                Categories
                Review

                Molecular biology
                terpenes,biosynthesis,phytoalexin,insecticidal,allelopathy
                Molecular biology
                terpenes, biosynthesis, phytoalexin, insecticidal, allelopathy

                Comments

                Comment on this article