26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The three lives of viral fusion peptides

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Highlights

          • The presence of a fusion peptide (FP) is a hallmark of viral fusion glycoproteins.

          • Structure–function relationships underlying FP conservation remain greatly unknown.

          • FPs establish interactions satisfying their folding within pre-fusion glycoproteins.

          • Upon fusion activation FPs insert into and restructure target membranes.

          • FPs can finally combine with transmembrane domains to form integral membrane bundles.

          Abstract

          Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention.

          Related collections

          Most cited references181

          • Record: found
          • Abstract: found
          • Article: not found

          Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.

          Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme.

            Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atomic structure of the ectodomain from HIV-1 gp41.

              Fusion of viral and cellular membranes by the envelope glycoprotein gp120/gp41 effects entry of HIV-1 into the cell. The precursor, gp160, is cleaved post-translationally into gp120 and gp41 which remain non-covalently associated. Binding to both CD4 and a co-receptor leads to the conformational changes in gp120/gp41 needed for membrane fusion. We used X-ray crystallography to determine the structure of the protease-resistant part of a gp41 ectodomain solubilized with a trimeric GCN4 coiled coil in place of the amino-terminal fusion peptide. The core of the molecule is found to be an extended, triple-stranded alpha-helical coiled coil with the amino terminus at its tip. A carboxy-terminal alpha-helix packs in the reverse direction against the outside of the coiled coil, placing the amino and carboxy termini near each other at one end of the long rod. These features, and the existence of a similar reversal of chain direction in the fusion pH-induced conformation of influenza virus HA2 and in the transmembrane subunit of Moloney murine leukaemia virus (Fig. 1a-d), suggest a common mechanism for initiating fusion.
                Bookmark

                Author and article information

                Contributors
                Journal
                Chem Phys Lipids
                Chem. Phys. Lipids
                Chemistry and Physics of Lipids
                Elsevier Science Ireland Ltd
                0009-3084
                1873-2941
                2 April 2014
                July 2014
                2 April 2014
                : 181
                : 40-55
                Affiliations
                [0005]Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
                Author notes
                [* ]Corresponding author. Tel.: +34 94 601 3353; fax: +34 94 601 3360. gbpniesj@ 123456lg.ehu.es
                Article
                S0009-3084(14)00041-3
                10.1016/j.chemphyslip.2014.03.003
                4061400
                24704587
                34fbe15f-2d0a-4167-a24a-151455d904c9
                Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 5 February 2014
                : 19 March 2014
                : 20 March 2014
                Categories
                Article

                Biochemistry
                fusion peptide,membrane fusion,viral entry,peptide-lipid interaction
                Biochemistry
                fusion peptide, membrane fusion, viral entry, peptide-lipid interaction

                Comments

                Comment on this article