28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosome: A Novel Approach to Stimulate Bone Regeneration through Regulation of Osteogenesis and Angiogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The clinical need for effective bone regeneration therapy remains in huge demands. However, the current “gold standard” treatments of autologous and allogeneic bone grafts may result in various complications. Furthermore, safety considerations of biomaterials and cell-based treatment require further clarification. Therefore, developing new therapies with stronger osteogenic potential and a lower incidence of complications is worthwhile. Recently, exosomes, small vesicles of endocytic origin, have attracted attention in bone regeneration field. The vesicles travel between cells and deliver functional cargoes, such as proteins and RNAs, thereby regulating targeted cells differentiation, commitment, function, and proliferation. Much evidence has demonstrated the important roles of exosomes in osteogenesis both in vitro and in vivo. In this review, we summarize the properties, origins and biogenesis of exosomes, and the recent reports using exosomes to regulate osteogenesis and promote bone regeneration.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial Notch activity promotes angiogenesis and osteogenesis in bone.

          Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter.

            Extracellular vesicles (EVs) are nanosized vesicles released by normal and diseased cells as a novel form of intercellular communication and can serve as an effective therapeutic vehicle for genes and drugs. Yet, much remains unknown about the in vivo properties of EVs such as tissue distribution, blood levels, and urine clearance, important parameters that will define their therapeutic effectiveness and potential toxicity. Here we combined Gaussia luciferase and metabolic biotinylation to create a sensitive EV reporter (EV-GlucB) for multimodal imaging in vivo, as well as monitoring of EV levels in the organs and biofluids ex vivo after administration of EVs. Bioluminescence and fluorescence-mediated tomography imaging on mice displayed a predominant localization of intravenously administered EVs in the spleen followed by the liver. Monitoring EV signal in the organs, blood, and urine further revealed that the EVs first undergo a rapid distribution phase followed by a longer elimination phase via hepatic and renal routes within six hours, which are both faster than previously reported using dye-labeled EVs. Moreover, we demonstrate systemically injected EVs can be delivered to tumor sites within an hour following injection. Altogether, we show the EVs are dynamically processed in vivo with accurate spatiotemporal resolution and target a number of normal organs as well as tumors with implications for disease pathology and therapeutic design.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation.

              Hypertrophic chondrocytes in the epiphyseal growth plate express the angiogenic protein vascular endothelial growth factor (VEGF). To determine the role of VEGF in endochondral bone formation, we inactivated this factor through the systemic administration of a soluble receptor chimeric protein (Flt-(1-3)-IgG) to 24-day-old mice. Blood vessel invasion was almost completely suppressed, concomitant with impaired trabecular bone formation and expansion of hypertrophic chondrocyte zone. Recruitment and/or differentiation of chondroclasts, which express gelatinase B/matrix metalloproteinase-9, and resorption of terminal chondrocytes decreased. Although proliferation, differentiation and maturation of chondrocytes were apparently normal, resorption was inhibited. Cessation of the anti-VEGF treatment was followed by capillary invasion, restoration of bone growth, resorption of the hypertrophic cartilage and normalization of the growth plate architecture. These findings indicate that VEGF-mediated capillary invasion is an essential signal that regulates growth plate morphogenesis and triggers cartilage remodeling. Thus, VEGF is an essential coordinator of chondrocyte death, chondroclast function, extracellular matrix remodeling, angiogenesis and bone formation in the growth plate.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                19 May 2016
                May 2016
                : 17
                : 5
                : 712
                Affiliations
                [1 ]Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200030, China; yunhao_qin@ 123456live.cn
                [2 ]The Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China; qingshuiqiuqian@ 123456126.com
                [3 ]Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China; challengewu1988@ 123456163.com
                [4 ]School of Medicine, Shanghai Tongji University School of Medicine, Shanghai 200092, China; dsv_231@ 123456hotmail.com
                Author notes
                [* ]Correspondence: zhangcq@ 123456sjtu.edu.cn ; Tel.: +86-21-6436-9181
                Article
                ijms-17-00712
                10.3390/ijms17050712
                4881534
                27213355
                31ed4426-4145-427a-907c-c0209c9ef32f
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 March 2016
                : 05 May 2016
                Categories
                Review

                Molecular biology
                exosome,osteogenesis,bone regeneration
                Molecular biology
                exosome, osteogenesis, bone regeneration

                Comments

                Comment on this article