25
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular technique reveals high variability of 18S rDNA distribution in harvestmen (Opiliones, Phalangiidae) from South Africa

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          The knowledge of cytogenetics in the harvestmen family Phalangiidae has been based on taxa from the Northern Hemisphere. We performed cytogenetic analysis on Guruia africana (Karsch, 1878) (2n=24) and four species of the genus Rhampsinitus Simon, 1879 (2n=24, 26, 34) from South Africa. Fluorescence in situ hybridization with an 18S rDNA probe was used to analyze the number and the distribution of this cluster in the family Phalangiidae for the first time. The results support the cytogenetic characteristics typical for the majority of harvestmen taxa, i.e. the predominance of small biarmed chromosomes and the absence of morphologically well-differentiated sex chromosomes as an ancestral state. We identified the number of 18S rDNA sites ranging from two in R. qachasneki Kauri, 1962 to seven in one population of R. leighi Pocock, 1903. Moreover, we found differences in the number and localization of 18S rDNA sites in R. leighi between populations from two localities and between sexes of R. capensis (Loman, 1898). The heterozygous states of the 18S rDNA sites in these species may indicate the presence of XX/XY and ZZ/ZW sex chromosomes, and the possible existence of these systems in harvestmen is discussed. The variability of the 18S rDNA sites indicates intensive chromosomal changes during the differentiation of the karyotypes, which is in contrast to the usual uniformity in chromosomal morphology known from harvestmen so far.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications

          Background Sympatric species pairs are particularly common in freshwater fishes associated with postglacial lakes in northern temperate environments. The nature of divergences between co-occurring sympatric species, factors contributing to reproductive isolation and modes of genome evolution is a much debated topic in evolutionary biology addressed by various experimental tools. To the best of our knowledge, nobody approached this field using molecular cytogenetics. We examined chromosomes and genomes of one postglacial species pair, sympatric European winter-spawning Coregonus albula and the local endemic dwarf-sized spring-spawning C. fontanae, both originating in Lake Stechlin. We have employed molecular cytogenetic tools to identify the genomic differences between the two species of the sympatric pair on the sub-chromosomal level of resolution. Results Fluorescence in situ hybridization (FISH) experiments consistently revealed a distinct variation in the copy number of loci of the major ribosomal DNA (the 45S unit) between C. albula and C. fontanae genomes. In C. fontanae, up to 40 chromosomes were identified to bear a part of the major ribosomal DNA, while in C. albula only 8–10 chromosomes possessed these genes. To determine mechanisms how such extensive genome alternation might have arisen, a PCR screening for retrotransposons from genomic DNA of both species was performed. The amplified retrotransposon Rex1 was used as a probe for FISH mapping onto chromosomes of both species. These experiments showed a clear co-localization of the ribosomal DNA and the retrotransposon Rex1 in a pericentromeric region of one or two acrocentric chromosomes in both species. Conclusion We demonstrated genomic consequences of a rapid ecological speciation on the level undetectable by neither sequence nor karyotype analysis. We provide indirect evidence that ribosomal DNA probably utilized the spreading mechanism of retrotransposons subsequently affecting recombination rates in both genomes, thus, leading to a rapid genome divergence. We attribute these extensive genome re-arrangements associated with speciation event to stress-induced retrotransposons (re)activation. Such causal interplay between genome differentiation, retrotransposons (re)activation and environmental conditions may become a topic to be explored in a broader genomic context in future evolutionary studies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Polymorphic nature of nucleolus organizer regions in fishes

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci.

              We investigate regularities and restrictions in chromosome location of ribosomal RNA genes, analysed by fluorescent in situ hybridization (FISH), and their phenotypic expression assessed by nucleolus formation at first meiotic prophase cells, analysed by silver impregnation, in 49 grasshopper species. High variation was found for rDNA location between species within most genera analysed. The mean haploid number of rDNA loci detected by FISH was 2.47, but some species had up to 10 loci. Chromosome distribution of rDNA loci differed between the Gomphocerinae and Oedipodinae subfamilies, most loci being proximal to the centromere in the former and distal to it in the latter. Chromosomes 2, 3 and X frequently carried rDNA in Gomphocerinae species with 2n male symbol=17 chromosomes, whereas chromosomes 6 and 9 were the most frequent rDNA locations in the Oedipodinae. About 13% of the 126 rDNA loci detected by FISH were silent, although this figure might be even higher. The comparison of FISH and silver-impregnation results also suggested the existence of cryptic NORs, i.e. those forming small nucleoli with no apparent presence of rDNA revealed by FISH. This was especially clear after the same cells in two species were sequentially treated with both silver impregnation and FISH. The abundance of silent and cryptic loci might thus suggest that rDNA spreads through grasshopper genomes by the Dubcovsky and Dvorak mechanism-that is, the transposition of a few rRNA genes to new chromosome locations, their amplification giving rise to new NORs, and the elimination of the old NORs. The cryptic NORs might correspond to nascent NORs, i.e. a few rRNA gene copies moved to new locations, whereas the inactive rDNA loci might correspond to those being in the process of elimination.
                Bookmark

                Author and article information

                Journal
                Comp Cytogenet
                Comp Cytogenet
                CompCytogen
                Comparative Cytogenetics
                Pensoft Publishers
                1993-0771
                1993-078X
                2018
                13 February 2018
                : 12
                : 1
                : 41-59
                Affiliations
                [1 ] Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12844 Praha, Czech Republic
                [2 ] Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL 36849, USA
                [3 ] Department of Arachnology, National Museum, P.O. Box 266, Bloemfontein 9300, South Africa
                [4 ] Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
                Author notes
                Corresponding author: František Šťáhlavský ( stahlf@ 123456natur.cuni.cz )

                Academic editor: M. Schneider

                Article
                10.3897/CompCytogen.v12i1.21744
                5904373
                29675136
                30916d2b-01e6-4b1f-a389-2c89e8da2163
                František Šťáhlavský, Vera Opatova, Pavel Just, Leon N. Lotz, Charles R. Haddad

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 October 2017
                : 27 December 2017
                Categories
                Research Article

                karyotype,meiosis,sex chromosomes,fish,18s rdna
                karyotype, meiosis, sex chromosomes, fish, 18s rdna

                Comments

                Comment on this article

                scite_

                Similar content124

                Cited by5

                Most referenced authors320