85
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patient Characteristics Associated With Telemedicine Access for Primary and Specialty Ambulatory Care During the COVID-19 Pandemic

      research-article
      , MD, MPH 1 , 2 , 3 , 4 , , MS 5 , , MD, MPH, ML 1 , 3 , , MD, MPH 1 , 3 , , MD, MPH 1 , 2 , 4 , , MD 1 , 2 , 4 , , MPH 5 , , MD, MBA 1 , 6 , , MD, MPH 4 , 5 , 7 , , MD, MS 8 , , MD 9 , , MD, MPH, MS 9 , 10 , , MD, MPH, MSEd 1 , 3 , , MD 1 , , MD 1 , , MD, MPH 1 , , MSEd, MPH 10 , , MD 10 , , MD 9 , 10 , , MD 1 , , MD, ScM 1 , 3 , , MD 1 , , MD 11 , , MBA, BSN, RN 11 , , MD, MSc 1 , 2 , 3 , 4 , 10 , 11 ,
      JAMA Network Open
      American Medical Association

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Key Points

          Question

          What sociodemographic factors are associated with higher use of telemedicine and the use of video (vs telephone) for telemedicine visits for ambulatory care during the coronavirus disease 2019 (COVID-19) pandemic?

          Findings

          In this cohort study of 148 402 patients scheduled for primary care and medical specialty ambulatory telemedicine visits at a large academic health system during the early phase of the COVID-19 pandemic, older age, Asian race, non-English language as the patient’s preferred language, and Medicaid were independently associated with fewer completed telemedicine visits. Older age, female sex, Black race, Latinx ethnicity, and lower household income were associated with lower use of video for telemedicine care.

          Meaning

          This study identified racial/ethnic, sex, age, language, and socioeconomic differences in accessing telemedicine for primary care and specialty ambulatory care; if not addressed, these differences may compound existing inequities in care among vulnerable populations.

          Abstract

          Importance

          The coronavirus disease 2019 (COVID-19) pandemic has required a shift in health care delivery platforms, necessitating a new reliance on telemedicine.

          Objective

          To evaluate whether inequities are present in telemedicine use and video visit use for telemedicine visits during the COVID-19 pandemic.

          Design, Setting, and Participants

          In this cohort study, a retrospective medical record review was conducted from March 16 to May 11, 2020, of all patients scheduled for telemedicine visits in primary care and specialty ambulatory clinics at a large academic health system. Age, race/ethnicity, sex, language, median household income, and insurance type were all identified from the electronic medical record.

          Main Outcomes and Measures

          A successfully completed telemedicine visit and video (vs telephone) visit for a telemedicine encounter. Multivariable models were used to assess the association between sociodemographic factors, including sex, race/ethnicity, socioeconomic status, and language, and the use of telemedicine visits, as well as video use specifically.

          Results

          A total of 148 402 unique patients (86 055 women [58.0%]; mean [SD] age, 56.5 [17.7] years) had scheduled telemedicine visits during the study period; 80 780 patients (54.4%) completed visits. Of 78 539 patients with completed visits in which visit modality was specified, 35 824 (45.6%) were conducted via video, whereas 24 025 (56.9%) had a telephone visit. In multivariable models, older age (adjusted odds ratio [aOR], 0.85 [95% CI, 0.83-0.88] for those aged 55-64 years; aOR, 0.75 [95% CI, 0.72-0.78] for those aged 65-74 years; aOR, 0.67 [95% CI, 0.64-0.70] for those aged ≥75 years), Asian race (aOR, 0.69 [95% CI, 0.66-0.73]), non-English language as the patient’s preferred language (aOR, 0.84 [95% CI, 0.78-0.90]), and Medicaid insurance (aOR, 0.93 [95% CI, 0.89-0.97]) were independently associated with fewer completed telemedicine visits. Older age (aOR, 0.79 [95% CI, 0.76-0.82] for those aged 55-64 years; aOR, 0.78 [95% CI, 0.74-0.83] for those aged 65-74 years; aOR, 0.49 [95% CI, 0.46-0.53] for those aged ≥75 years), female sex (aOR, 0.92 [95% CI, 0.90-0.95]), Black race (aOR, 0.65 [95% CI, 0.62-0.68]), Latinx ethnicity (aOR, 0.90 [95% CI, 0.83-0.97]), and lower household income (aOR, 0.57 [95% CI, 0.54-0.60] for income <$50 000; aOR, 0.89 [95% CI, 0.85-0.92], for $50 000-$100 000) were associated with less video use for telemedicine visits. These results were similar across medical specialties.

          Conclusions and Relevance

          In this cohort study of patients scheduled for primary care and medical specialty ambulatory telemedicine visits at a large academic health system during the early phase of the COVID-19 pandemic, older patients, Asian patients, and non–English-speaking patients had lower rates of telemedicine use, while older patients, female patients, Black, Latinx, and poorer patients had less video use. Inequities in accessing telemedicine care are present, which warrant further attention.

          Abstract

          This cohort study evaluates whether inequities are present in telemedicine use and video visit use for telemedicine visits during the coronavirus disease 2019 pandemic.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation

          The objective of this study was to develop a prospectively applicable method for classifying comorbid conditions which might alter the risk of mortality for use in longitudinal studies. A weighted index that takes into account the number and the seriousness of comorbid disease was developed in a cohort of 559 medical patients. The 1-yr mortality rates for the different scores were: "0", 12% (181); "1-2", 26% (225); "3-4", 52% (71); and "greater than or equal to 5", 85% (82). The index was tested for its ability to predict risk of death from comorbid disease in the second cohort of 685 patients during a 10-yr follow-up. The percent of patients who died of comorbid disease for the different scores were: "0", 8% (588); "1", 25% (54); "2", 48% (25); "greater than or equal to 3", 59% (18). With each increased level of the comorbidity index, there were stepwise increases in the cumulative mortality attributable to comorbid disease (log rank chi 2 = 165; p less than 0.0001). In this longer follow-up, age was also a predictor of mortality (p less than 0.001). The new index performed similarly to a previous system devised by Kaplan and Feinstein. The method of classifying comorbidity provides a simple, readily applicable and valid method of estimating risk of death from comorbid disease for use in longitudinal studies. Further work in larger populations is still required to refine the approach because the number of patients with any given condition in this study was relatively small.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020

            Since SARS-CoV-2, the novel coronavirus that causes coronavirus disease 2019 (COVID-19), was first detected in December 2019 ( 1 ), approximately 1.3 million cases have been reported worldwide ( 2 ), including approximately 330,000 in the United States ( 3 ). To conduct population-based surveillance for laboratory-confirmed COVID-19–associated hospitalizations in the United States, the COVID-19–Associated Hospitalization Surveillance Network (COVID-NET) was created using the existing infrastructure of the Influenza Hospitalization Surveillance Network (FluSurv-NET) ( 4 ) and the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET). This report presents age-stratified COVID-19–associated hospitalization rates for patients admitted during March 1–28, 2020, and clinical data on patients admitted during March 1–30, 2020, the first month of U.S. surveillance. Among 1,482 patients hospitalized with COVID-19, 74.5% were aged ≥50 years, and 54.4% were male. The hospitalization rate among patients identified through COVID-NET during this 4-week period was 4.6 per 100,000 population. Rates were highest (13.8) among adults aged ≥65 years. Among 178 (12%) adult patients with data on underlying conditions as of March 30, 2020, 89.3% had one or more underlying conditions; the most common were hypertension (49.7%), obesity (48.3%), chronic lung disease (34.6%), diabetes mellitus (28.3%), and cardiovascular disease (27.8%). These findings suggest that older adults have elevated rates of COVID-19–associated hospitalization and the majority of persons hospitalized with COVID-19 have underlying medical conditions. These findings underscore the importance of preventive measures (e.g., social distancing, respiratory hygiene, and wearing face coverings in public settings where social distancing measures are difficult to maintain) † to protect older adults and persons with underlying medical conditions, as well as the general public. In addition, older adults and persons with serious underlying medical conditions should avoid contact with persons who are ill and immediately contact their health care provider(s) if they have symptoms consistent with COVID-19 (https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html) ( 5 ). Ongoing monitoring of hospitalization rates, clinical characteristics, and outcomes of hospitalized patients will be important to better understand the evolving epidemiology of COVID-19 in the United States and the clinical spectrum of disease, and to help guide planning and prioritization of health care system resources. COVID-NET conducts population-based surveillance for laboratory-confirmed COVID-19–associated hospitalizations among persons of all ages in 99 counties in 14 states (California, Colorado, Connecticut, Georgia, Iowa, Maryland, Michigan, Minnesota, New Mexico, New York, Ohio, Oregon, Tennessee, and Utah), distributed across all 10 U.S Department of Health and Human Services regions. § The catchment area represents approximately 10% of the U.S. population. Patients must be residents of a designated COVID-NET catchment area and hospitalized within 14 days of a positive SARS-CoV-2 test to meet the surveillance case definition. Testing is requested at the discretion of treating health care providers. Laboratory-confirmed SARS-CoV-2 is defined as a positive result by any test that has received Emergency Use Authorization for SARS-CoV-2 testing. ¶ COVID-NET surveillance officers in each state identify cases through active review of notifiable disease and laboratory databases and hospital admission and infection control practitioner logs. Weekly age-stratified hospitalization rates are estimated using the number of catchment area residents hospitalized with laboratory-confirmed COVID-19 as the numerator and National Center for Health Statistics vintage 2018 bridged-race postcensal population estimates for the denominator.** As of April 3, 2020, COVID-NET hospitalization rates are being published each week at https://gis.cdc.gov/grasp/covidnet/COVID19_3.html. For each case, trained surveillance officers conduct medical chart abstractions using a standard case report form to collect data on patient characteristics, underlying medical conditions, clinical course, and outcomes. Chart reviews are finalized once patients have a discharge disposition. COVID-NET surveillance was initiated on March 23, 2020, with retrospective case identification of patients admitted during March 1–22, 2020, and prospective case identification during March 23–30, 2020. Clinical data on underlying conditions and symptoms at admission are presented through March 30; hospitalization rates are updated weekly and, therefore, are presented through March 28 (epidemiologic week 13). The COVID-19–associated hospitalization rate among patients identified through COVID-NET for the 4-week period ending March 28, 2020, was 4.6 per 100,000 population (Figure 1). Hospitalization rates increased with age, with a rate of 0.3 in persons aged 0–4 years, 0.1 in those aged 5–17 years, 2.5 in those aged 18–49 years, 7.4 in those aged 50–64 years, and 13.8 in those aged ≥65 years. Rates were highest among persons aged ≥65 years, ranging from 12.2 in those aged 65–74 years to 17.2 in those aged ≥85 years. More than half (805; 54.4%) of hospitalizations occurred among men; COVID-19-associated hospitalization rates were higher among males than among females (5.1 versus 4.1 per 100,000 population). Among the 1,482 laboratory-confirmed COVID-19–associated hospitalizations reported through COVID-NET, six (0.4%) each were patients aged 0–4 years and 5–17 years, 366 (24.7%) were aged 18–49 years, 461 (31.1%) were aged 50–64 years, and 643 (43.4%) were aged ≥65 years. Among patients with race/ethnicity data (580), 261 (45.0%) were non-Hispanic white (white), 192 (33.1%) were non-Hispanic black (black), 47 (8.1%) were Hispanic, 32 (5.5%) were Asian, two (0.3%) were American Indian/Alaskan Native, and 46 (7.9%) were of other or unknown race. Rates varied widely by COVID-NET surveillance site (Figure 2). FIGURE 1 Laboratory-confirmed coronavirus disease 2019 (COVID-19)–associated hospitalization rates,* by age group — COVID-NET, 14 states, † March 1–28, 2020 Abbreviation: COVID-NET = Coronavirus Disease 2019–Associated Hospitalization Surveillance Network. * Number of patients hospitalized with COVID-19 per 100,000 population. † Counties included in COVID-NET surveillance: California (Alameda, Contra Costa, and San Francisco counties); Colorado (Adams, Arapahoe, Denver, Douglas, and Jefferson counties); Connecticut (New Haven and Middlesex counties); Georgia (Clayton, Cobb, DeKalb, Douglas, Fulton, Gwinnett, Newton, and Rockdale counties); Iowa (one county represented); Maryland (Allegany, Anne Arundel, Baltimore, Baltimore City, Calvert, Caroline, Carroll, Cecil, Charles, Dorchester, Frederick, Garrett, Harford, Howard, Kent, Montgomery, Prince George’s, Queen Anne’s, St. Mary’s, Somerset, Talbot, Washington, Wicomico, and Worcester counties); Michigan (Clinton, Eaton, Genesee, Ingham, and Washtenaw counties); Minnesota (Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, and Washington counties); New Mexico (Bernalillo, Chaves, Dona Ana, Grant, Luna, San Juan, and Santa Fe counties); New York (Albany, Columbia, Genesee, Greene, Livingston, Monroe, Montgomery, Ontario, Orleans, Rensselaer, Saratoga, Schenectady, Schoharie, Wayne, and Yates counties); Ohio (Delaware, Fairfield, Franklin, Hocking, Licking, Madison, Morrow, Perry, Pickaway and Union counties); Oregon (Clackamas, Multnomah, and Washington counties); Tennessee (Cheatham, Davidson, Dickson, Robertson, Rutherford, Sumner, Williamson, and Wilson counties); and Utah (Salt Lake County). The figure is a bar chart showing laboratory-confirmed COVID-19–associated hospitalization rates, by age group, in 14 states during March 1–28, 2020 according to the Coronavirus Disease 2019–Associated Hospitalization Surveillance Network. FIGURE 2 Laboratory-confirmed coronavirus disease 2019 (COVID-19)–associated hospitalization rates,* by surveillance site † — COVID-NET, 14 states, March 1–28, 2020 Abbreviation: COVID-NET = Coronavirus Disease 2019–Associated Hospitalization Surveillance Network. * Number of patients hospitalized with COVID-19 per 100,000 population. † Counties included in COVID-NET surveillance: California (Alameda, Contra Costa, and San Francisco counties); Colorado (Adams, Arapahoe, Denver, Douglas, and Jefferson counties); Connecticut (New Haven and Middlesex counties); Georgia (Clayton, Cobb, DeKalb, Douglas, Fulton, Gwinnett, Newton, and Rockdale counties); Iowa (one county represented); Maryland (Allegany, Anne Arundel, Baltimore, Baltimore City, Calvert, Caroline, Carroll, Cecil, Charles, Dorchester, Frederick, Garrett, Harford, Howard, Kent, Montgomery, Prince George’s, Queen Anne’s, St. Mary’s, Somerset, Talbot, Washington, Wicomico, and Worcester counties); Michigan (Clinton, Eaton, Genesee, Ingham, and Washtenaw counties); Minnesota (Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, and Washington counties); New Mexico (Bernalillo, Chaves, Dona Ana, Grant, Luna, San Juan, and Santa Fe counties); New York (Albany, Columbia, Genesee, Greene, Livingston, Monroe, Montgomery, Ontario, Orleans, Rensselaer, Saratoga, Schenectady, Schoharie, Wayne, and Yates counties); Ohio (Delaware, Fairfield, Franklin, Hocking, Licking, Madison, Morrow, Perry, Pickaway and Union counties); Oregon (Clackamas, Multnomah, and Washington counties); Tennessee (Cheatham, Davidson, Dickson, Robertson, Rutherford, Sumner, Williamson, and Wilson counties); and Utah (Salt Lake County). The figure is a bar chart showing laboratory-confirmed COVID-19–associated hospitalization rates, by surveillance site, in 14 states during March 1–28, 2020 according to the Coronavirus Disease 2019–Associated Hospitalization Surveillance Network. During March 1–30, underlying medical conditions and symptoms at admission were reported through COVID-NET for approximately 180 (12.1%) hospitalized adults (Table); 89.3% had one or more underlying conditions. The most commonly reported were hypertension (49.7%), obesity (48.3%), chronic lung disease (34.6%), diabetes mellitus (28.3%), and cardiovascular disease (27.8%). Among patients aged 18–49 years, obesity was the most prevalent underlying condition, followed by chronic lung disease (primarily asthma) and diabetes mellitus. Among patients aged 50–64 years, obesity was most prevalent, followed by hypertension and diabetes mellitus; and among those aged ≥65 years, hypertension was most prevalent, followed by cardiovascular disease and diabetes mellitus. Among 33 females aged 15–49 years hospitalized with COVID-19, three (9.1%) were pregnant. Among 167 patients with available data, the median interval from symptom onset to admission was 7 days (interquartile range [IQR] = 3–9 days). The most common signs and symptoms at admission included cough (86.1%), fever or chills (85.0%), and shortness of breath (80.0%). Gastrointestinal symptoms were also common; 26.7% had diarrhea, and 24.4% had nausea or vomiting. TABLE Underlying conditions and symptoms among adults aged ≥18 years with coronavirus disease 2019 (COVID-19)–associated hospitalizations — COVID-NET, 14 states,* March 1–30, 2020† Underlying condition Age group (yrs), no./total no. (%) Overall 18–49 50–64 ≥65 years Any underlying condition 159/178 (89.3) 41/48 (85.4) 51/59 (86.4) 67/71 (94.4) Hypertension 79/159 (49.7) 7/40 (17.5) 27/57 (47.4) 45/62 (72.6) Obesity§ 73/151 (48.3) 23/39 (59.0) 25/51 (49.0) 25/61 (41.0) Chronic metabolic disease¶ 60/166 (36.1) 10/46 (21.7) 21/56 (37.5) 29/64 (45.3)    Diabetes mellitus 47/166 (28.3) 9/46 (19.6) 18/56 (32.1) 20/64 (31.3) Chronic lung disease 55/159 (34.6) 16/44 (36.4) 15/53 (28.3) 24/62 (38.7)    Asthma 27/159 (17.0) 12/44 (27.3) 7/53 (13.2) 8/62 (12.9)    Chronic obstructive pulmonary disease 17/159 (10.7) 0/44 (0.0) 3/53 (5.7) 14/62 (22.6) Cardiovascular disease** 45/162 (27.8) 2/43 (4.7) 11/56 (19.6) 32/63 (50.8)    Coronary artery disease 23/162 (14.2) 0/43 (0.0) 7/56 (12.5) 16/63 (25.4)    Congestive heart failure 11/162 (6.8) 2/43 (4.7) 3/56 (5.4) 6/63 (9.5) Neurologic disease 22/157 (14.0) 4/42 (9.5) 4/55 (7.3) 14/60 (23.3) Renal disease 20/153 (13.1) 3/41 (7.3) 2/53 (3.8) 15/59 (25.4) Immunosuppressive condition 15/156 (9.6) 5/43 (11.6) 4/54 (7.4) 6/59 (10.2) Gastrointestinal/Liver disease 10/152 (6.6) 4/42 (9.5) 0/54 (0.0) 6/56 (10.7) Blood disorder 9/156 (5.8) 1/43 (2.3) 1/55 (1.8) 7/58 (12.1) Rheumatologic/Autoimmune disease 3/154 (1.9) 1/42 (2.4) 0/54 (0.0) 2/58 (3.4) Pregnancy†† 3/33 (9.1) 3/33 (9.1) N/A N/A Symptom §§ Cough 155/180 (86.1) 43/47 (91.5) 54/60 (90.0) 58/73 (79.5) Fever/Chills 153/180 (85.0) 38/47 (80.9) 53/60 (88.3) 62/73 (84.9) Shortness of breath 144/180 (80.0) 40/47 (85.1) 50/60 (83.3) 54/73 (74.0) Myalgia 62/180 (34.4) 20/47 (42.6) 23/60 (38.3) 19/73 (26.0) Diarrhea 48/180 (26.7) 10/47 (21.3) 17/60 (28.3) 21/73 (28.8) Nausea/Vomiting 44/180 (24.4) 12/47 (25.5) 17/60 (28.3) 15/73 (20.5) Sore throat 32/180 (17.8) 8/47 (17.0) 13/60 (21.7) 11/73 (15.1) Headache 29/180 (16.1) 10/47 (21.3) 12/60 (20.0) 7/73 (9.6) Nasal congestion/Rhinorrhea 29/180 (16.1) 8/47 (17.0) 13/60 (21.7) 8/73 (11.0) Chest pain 27/180 (15.0) 9/47 (19.1) 13/60 (21.7) 5/73 (6.8) Abdominal pain 15/180 (8.3) 6/47 (12.8) 6/60 (10.0) 3/73 (4.1) Wheezing 12/180 (6.7) 3/47 (6.4) 2/60 (3.3) 7/73 (9.6) Altered mental status/Confusion 11/180 (6.1) 3/47 (6.4) 2/60 (3.3) 6/73 (8.2) Abbreviations: COVID-NET = Coronavirus Disease 2019–Associated Hospitalization Surveillance Network; N/A = not applicable. * Counties included in COVID-NET surveillance: California (Alameda, Contra Costa, and San Francisco counties); Colorado (Adams, Arapahoe, Denver, Douglas, and Jefferson counties); Connecticut (New Haven and Middlesex counties); Georgia (Clayton, Cobb, DeKalb, Douglas, Fulton, Gwinnett, Newton, and Rockdale counties); Iowa (one county represented); Maryland (Allegany, Anne Arundel, Baltimore, Baltimore City, Calvert, Caroline, Carroll, Cecil, Charles, Dorchester, Frederick, Garrett, Harford, Howard, Kent, Montgomery, Prince George’s, Queen Anne’s, St. Mary’s, Somerset, Talbot, Washington, Wicomico, and Worcester counties); Michigan (Clinton, Eaton, Genesee, Ingham, and Washtenaw counties); Minnesota (Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, and Washington counties); New Mexico (Bernalillo, Chaves, Dona Ana, Grant, Luna, San Juan, and Santa Fe counties); New York (Albany, Columbia, Genesee, Greene, Livingston, Monroe, Montgomery, Ontario, Orleans, Rensselaer, Saratoga, Schenectady, Schoharie, Wayne, and Yates counties); Ohio (Delaware, Fairfield, Franklin, Hocking, Licking, Madison, Morrow, Perry, Pickaway and Union counties); Oregon (Clackamas, Multnomah, and Washington counties); Tennessee (Cheatham, Davidson, Dickson, Robertson, Rutherford, Sumner, Williamson, and Wilson counties); and Utah (Salt Lake County). † COVID-NET included data for one child aged 5–17 years with underlying medical conditions and symptoms at admission; data for this child are not included in this table. This child was reported to have chronic lung disease (asthma). Symptoms included fever, cough, gastrointestinal symptoms, shortness of breath, chest pain, and a sore throat on admission. § Obesity is defined as calculated body mass index (BMI) ≥30 kg/m2, and if BMI is missing, by International Classification of Diseases discharge diagnosis codes. Among 73 patients with obesity, 51 (69.9%) had obesity defined as BMI 30–<40 kg/m2, and 22 (30.1%) had severe obesity defined as BMI ≥40 kg/m2. ¶ Among the 60 patients with chronic metabolic disease, 45 had diabetes mellitus only, 13 had thyroid dysfunction only, and two had diabetes mellitus and thyroid dysfunction. ** Cardiovascular disease excludes hypertension. †† Restricted to women aged 15–49 years. §§ Symptoms were collected through review of admission history and physical exam notes in the medical record and might be determined by subjective or objective findings. In addition to the symptoms in the table, the following less commonly reported symptoms were also noted for adults with information on symptoms (180): hemoptysis/bloody sputum (2.2%), rash (1.1%), conjunctivitis (0.6%), and seizure (0.6%). Discussion During March 1–28, 2020, the overall laboratory-confirmed COVID-19–associated hospitalization rate was 4.6 per 100,000 population; rates increased with age, with the highest rates among adults aged ≥65 years. Approximately 90% of hospitalized patients identified through COVID-NET had one or more underlying conditions, the most common being obesity, hypertension, chronic lung disease, diabetes mellitus, and cardiovascular disease. Using the existing infrastructure of two respiratory virus surveillance platforms, COVID-NET was implemented to produce robust, weekly, age-stratified hospitalization rates using standardized data collection methods. These data are being used, along with data from other surveillance platforms (https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview.html), to monitor COVID-19 disease activity and severity in the United States. During the first month of surveillance, COVID-NET hospitalization rates ranged from 0.1 per 100,000 population in persons aged 5–17 years to 17.2 per 100,000 population in adults aged ≥85 years, whereas cumulative influenza hospitalization rates during the first 4 weeks of each influenza season (epidemiologic weeks 40–43) over the past 5 seasons have ranged from 0.1 in persons aged 5–17 years to 2.2–5.4 in adults aged ≥85 years ( 6 ). COVID-NET rates during this first 4-week period of surveillance are preliminary and should be interpreted with caution; given the rapidly evolving nature of the COVID-19 pandemic, rates are expected to increase as additional cases are identified and as SARS-CoV-2 testing capacity in the United States increases. In the COVID-NET catchment population, approximately 49% of residents are male and 51% of residents are female, whereas 54% of COVID-19-associated hospitalizations occurred in males and 46% occurred in females. These data suggest that males may be disproportionately affected by COVID-19 compared with females. Similarly, in the COVID-NET catchment population, approximately 59% of residents are white, 18% are black, and 14% are Hispanic; however, among 580 hospitalized COVID-19 patients with race/ethnicity data, approximately 45% were white, 33% were black, and 8% were Hispanic, suggesting that black populations might be disproportionately affected by COVID-19. These findings, including the potential impact of both sex and race on COVID-19-associated hospitalization rates, need to be confirmed with additional data. Most of the hospitalized patients had underlying conditions, some of which are recognized to be associated with severe COVID-19 disease, including chronic lung disease, cardiovascular disease, diabetes mellitus ( 5 ). COVID-NET does not collect data on nonhospitalized patients; thus, it was not possible to compare the prevalence of underlying conditions in hospitalized versus nonhospitalized patients. Many of the documented underlying conditions among hospitalized COVID-19 patients are highly prevalent in the United States. According to data from the National Health and Nutrition Examination Survey, hypertension prevalence among U.S. adults is 29% overall, ranging from 7.5%–63% across age groups ( 7 ), and age-adjusted obesity prevalence is 42% (range across age groups = 40%–43%) ( 8 ). Among hospitalized COVID-19 patients, hypertension prevalence was 50% (range across age groups = 18%–73%), and obesity prevalence was 48% (range across age groups = 41%–59%). In addition, the prevalences of several underlying conditions identified through COVID-NET were similar to those for hospitalized influenza patients identified through FluSurv-NET during influenza seasons 2014–15 through 2018–19: 41%–51% of patients had cardiovascular disease (excluding hypertension), 39%–45% had chronic metabolic disease, 33%–40% had obesity, and 29%–31% had chronic lung disease ( 6 ). Data on hypertension are not collected by FluSurv-NET. Among women aged 15–49 years hospitalized with COVID-19 and identified through COVID-NET, 9% were pregnant, which is similar to an estimated 9.9% of the general population of women aged 15–44 years who are pregnant at any given time based on 2010 data. †† Similar to other reports from the United States ( 9 ) and China ( 1 ), these findings indicate that a high proportion of U.S. patients hospitalized with COVID-19 are older and have underlying medical conditions. The findings in this report are subject to at least three limitations. First, hospitalization rates by age and COVID-NET site are preliminary and might change as additional cases are identified from this surveillance period. Second, whereas minimum case data to produce weekly age-stratified hospitalization rates are usually available within 7 days of case identification, availability of detailed clinical data are delayed because of the need for medical chart abstractions. As of March 30, chart abstractions had been conducted for approximately 200 COVID-19 patients; the frequency and distribution of underlying conditions during this time might change as additional data become available. Clinical course and outcomes will be presented once the number of cases with complete medical chart abstractions are sufficient; many patients are still hospitalized at the time of this report. Finally, testing for SARS-CoV-2 among patients identified through COVID-NET is performed at the discretion of treating health care providers, and testing practices and capabilities might vary widely across providers and facilities. As a result, underascertainment of cases in COVID-NET is likely. Additional data on testing practices related to SARS-CoV-2 will be collected in the future to account for underascertainment using described methods ( 10 ). Early data from COVID-NET suggest that COVID-19–associated hospitalizations in the United States are highest among older adults, and nearly 90% of persons hospitalized have one or more underlying medical conditions. These findings underscore the importance of preventive measures (e.g., social distancing, respiratory hygiene, and wearing face coverings in public settings where social distancing measures are difficult to maintain) to protect older adults and persons with underlying medical conditions. Ongoing monitoring of hospitalization rates, clinical characteristics, and outcomes of hospitalized patients will be important to better understand the evolving epidemiology of COVID-19 in the United States and the clinical spectrum of disease, and to help guide planning and prioritization of health care system resources. Summary What is already known about this topic? Population-based rates of laboratory-confirmed coronavirus disease 2019 (COVID-19)–associated hospitalizations are lacking in the United States. What is added by this report? COVID-NET was implemented to produce robust, weekly, age-stratified COVID-19–associated hospitalization rates. Hospitalization rates increase with age and are highest among older adults; the majority of hospitalized patients have underlying conditions. What are the implications for public health practice? Strategies to prevent COVID-19, including social distancing, respiratory hygiene, and face coverings in public settings where social distancing measures are difficult to maintain, are particularly important to protect older adults and those with underlying conditions. Ongoing monitoring of hospitalization rates is critical to understanding the evolving epidemiology of COVID-19 in the United States and to guide planning and prioritization of health care resources.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              COVID-19 and African Americans

                Bookmark

                Author and article information

                Journal
                JAMA Netw Open
                JAMA Netw Open
                JAMA Netw Open
                JAMA Network Open
                American Medical Association
                2574-3805
                29 December 2020
                December 2020
                29 December 2020
                : 3
                : 12
                : e2031640
                Affiliations
                [1 ]Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia
                [2 ]Penn Cardiovascular Outcomes, Quality, and Evaluative Research Center, Cardiovascular Institute, University of Pennsylvania, Philadelphia
                [3 ]Penn Cardiovascular Center for Health Equity and Social Justice, University of Pennsylvania, Philadelphia
                [4 ]Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
                [5 ]Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
                [6 ]Penn Center for Digital Cardiology, University of Pennsylvania, Philadelphia
                [7 ]Renal-Electrolyte and Hypertension, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia
                [8 ]Hematology and Oncology Division, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia
                [9 ]Department of Internal Medicine, Hospital of the University of Pennsylvania, Philadelphia
                [10 ]Penn Medicine Center for Health Care Innovation, University of Pennsylvania, Philadelphia
                [11 ]Office of the Chief Medical Information Officer, University of Pennsylvania Health System, Philadelphia
                Author notes
                Article Information
                Accepted for Publication: November 8, 2020.
                Published: December 29, 2020. doi:10.1001/jamanetworkopen.2020.31640
                Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Eberly LA et al. JAMA Network Open.
                Corresponding Author: Srinath Adusumalli, MD, MSc, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, 3400 Civic Center Blvd, Perelman Center for Advanced Medicine South Pavilion, Room 11-139, Philadelphia, PA 19104 ( srinath.adusumalli@ 123456pennmedicine.upenn.edu ).
                Author Contributions: Drs Eberly and Adusumalli had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.
                Concept and design: Eberly, Julien, Haynes, Nathan, Chokshi, Anastos-Wallen, Chaiyachati, Seigerman, Gitelman, Hanson, Deleener, Adusumalli.
                Acquisition, analysis, or interpretation of data: Eberly, Kallan, Khatana, Snider, Eneanya, Takvorian, Ambrose, O’Quinn, Goldberg, Leri, Choi, Kolansky, Cappola, Ferrari, Hanson, Adusumalli.
                Drafting of the manuscript: Eberly, Seigerman, Adusumalli.
                Critical revision of the manuscript for important intellectual content: All authors.
                Statistical analysis: Eberly, Kallan, Adusumalli.
                Obtained funding: Adusumalli.
                Administrative, technical, or material support: Haynes, Chokshi, Anastos-Wallen, Chaiyachati, Seigerman, Choi, Gitelman, Cappola, Adusumalli.
                Supervision: Julien, Eneanya, Ambrose, Seigerman, Goldberg, Kolansky, Ferrari, Hanson, Deleener, Adusumalli.
                Conflict of Interest Disclosures: Dr Eneanya reported receiving personal fees from Somatus outside the submitted work. Dr Chaiyachati reported receiving grants from Agency for Healthcare Research & Quality and Patient-Centered Outcomes Research Institute, and personal fees from Roundtrip Inc outside the submitted work. Dr Goldberg reported receiving grants from Respircaridia, and personal fees from Respircardia and Abbott outside the submitted work. No other disclosures were reported.
                Article
                zoi200981
                10.1001/jamanetworkopen.2020.31640
                7772717
                33372974
                2ed766c4-2c52-4d2a-b215-507351076a10
                Copyright 2020 Eberly LA et al. JAMA Network Open.

                This is an open access article distributed under the terms of the CC-BY License.

                History
                : 9 July 2020
                : 8 November 2020
                Categories
                Research
                Original Investigation
                Online Only
                Health Informatics

                Comments

                Comment on this article