1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parallel Reaction Monitoring Mass Spectrometry for Rapid and Accurate Identification of β-Lactamases Produced by Enterobacteriaceae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increasing spread of drug-resistant bacterial strains presents great challenges to clinical antibacterial treatment and public health, particularly with regard to β-lactamase-producing Enterobacteriaceae. A rapid and accurate detection method that can expedite precise clinical diagnostics and rational administration of antibiotics is urgently needed. Targeted proteomics, a technique involving selected reaction monitoring or multiple reaction monitoring, has been developed for detecting specific peptides. In the present study, a rapid single-colony-processing procedure combined with an improved parallel reaction monitoring (PRM) workflow based on HRAM Orbitrap MS was developed to detect carbapenemases ( Klebsiella pneumoniae carbapenemase, KPC; imipenemase, IMP; Verona integron-encoded metallo-β-lactamase, VIM; New Delhi metallo-β-lactamase, NDM; and oxacillinase, OXA), extended spectrum β-lactamases (TEM and CTX-M), and AmpC (CMY-2) produced by Enterobacteriaceae. Specific peptides were selected and validated, and their coefficients of variation and stability were evaluated. In total, 188 Enterobacteriaceae strains were screened using the workflow. Fourteen out of total 19 peptides have 100% specificity; three peptides have specificity >95% and two peptides have specificity ranged from 74∼85%. On the sensitivity, only nine peptides have 95∼100% sensitivity. The other 10 peptides have sensitivity ranged from 27∼94%. Thus, a screening method based on peptide groups was developed for the first time. Taken together, this study described a rapid extraction and detection workflow for widespread β-lactamases, including KPC, IMP, VIM, NDM, OXA, CMY, CTX-M, and TEM, using single colonies of Enterobacteriaceae strains. PRM-targeted proteomics was proven to be a promising approach for the detection of drug-resistant enzymes.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Skyline: an open source document editor for creating and analyzing targeted proteomics experiments.

          Skyline is a Windows client application for targeted proteomics method creation and quantitative data analysis. It is open source and freely available for academic and commercial use. The Skyline user interface simplifies the development of mass spectrometer methods and the analysis of data from targeted proteomics experiments performed using selected reaction monitoring (SRM). Skyline supports using and creating MS/MS spectral libraries from a wide variety of sources to choose SRM filters and verify results based on previously observed ion trap data. Skyline exports transition lists to and imports the native output files from Agilent, Applied Biosystems, Thermo Fisher Scientific and Waters triple quadrupole instruments, seamlessly connecting mass spectrometer output back to the experimental design document. The fast and compact Skyline file format is easily shared, even for experiments requiring many sample injections. A rich array of graphs displays results and provides powerful tools for inspecting data integrity as data are acquired, helping instrument operators to identify problems early. The Skyline dynamic report designer exports tabular data from the Skyline document model for in-depth analysis with common statistical tools. Single-click, self-updating web installation is available at http://proteome.gs.washington.edu/software/skyline. This web site also provides access to instructional videos, a support board, an issues list and a link to the source code project.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae.

            To develop a rapid and reliable tool to detect by multiplex PCR assays the most frequently widespread beta-lactamase genes encoding the OXA-1-like broad-spectrum beta-lactamases, extended-spectrum beta-lactamases (ESBLs), plasmid-mediated AmpC beta-lactamases and class A, B and D carbapenemases. Following the design of a specific group of primers and optimization using control strains, a set of six multiplex PCRs and one simplex PCR was created. An evaluation of the set was performed using a collection of 31 Enterobacteriaceae strains isolated from clinical specimens showing a resistance phenotype towards broad-spectrum cephalosporins and/or cephamycins and/or carbapenems. Direct sequencing from PCR products was subsequently carried out to identify beta-lactamase genes. Under optimized conditions, all positive controls confirmed the specificity of group-specific PCR primers. Except for the detection of carbapenemase genes, multiplex and simplex PCR assays were carried out using the same PCR conditions, allowing assays to be performed in a single run. Out of 31 isolates selected, 22 strains produced an ESBL, mostly CTX-M-15 but also CTX-M-1 and CTX-M-9, SHV-12, SHV-5, SHV-2, TEM-21, TEM-52 and a VEB-type ESBL, 6 strains produced a plasmid-mediated AmpC beta-lactamase (five DHA-1 and one CMY-2) and 3 strains produced both an ESBL (two SHV-12, one CTX-M-15) and a plasmid-mediated AmpC beta-lactamase (DHA-1). We report here the development of a useful method composed of a set of six multiplex PCRs and one simplex PCR for the rapid screening of the most frequently encountered beta-lactamases. This method allowed direct sequencing from the PCR products.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CTX-M Enzymes: Origin and Diffusion

              CTX-M β-lactamases are considered a paradigm in the evolution of a resistance mechanism. Incorporation of different chromosomal bla CTX-M related genes from different species of Kluyvera has derived in different CTX-M clusters. In silico analyses have shown that this event has occurred at least nine times; in CTX-M-1 cluster (3), CTX-M-2 and CTX-M-9 clusters (2 each), and CTX-M-8 and CTX-M-25 clusters (1 each). This has been mainly produced by the participation of genetic mobilization units such as insertion sequences (ISEcp1 or ISCR1) and the later incorporation in hierarchical structures associated with multifaceted genetic structures including complex class 1 integrons and transposons. The capture of these bla CTX-M genes from the environment by highly mobilizable structures could have been a random event. Moreover, after incorporation within these structures, β-lactam selective force such as that exerted by cefotaxime and ceftazidime has fueled mutational events underscoring diversification of different clusters. Nevertheless, more variants of CTX-M enzymes, including those not inhibited by β-lactamase inhibitors such as clavulanic acid (IR-CTX-M variants), only obtained under in in vitro experiments, are still waiting to emerge in the clinical setting. Penetration and the later global spread of CTX-M producing organisms have been produced with the participation of the so-called “epidemic resistance plasmids” often carried in multi-drug resistant and virulent high-risk clones. All these facts but also the incorporation and co-selection of emerging resistance determinants within CTX-M producing bacteria, such as those encoding carbapenemases, depict the currently complex pandemic scenario of multi-drug resistant isolates.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                20 June 2022
                2022
                : 13
                : 784628
                Affiliations
                Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
                Author notes

                Edited by: Karsten Becker, University Medicine Greifswald, Germany

                Reviewed by: Robert A. Bonomo, United States Department of Veterans Affairs, United States; Miriam Cordovana, Bruker Daltonik GmbH, Germany

                *Correspondence: Xuefu You, xuefuyou@ 123456hotmail.com

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.784628
                9251374
                2da14423-cf1f-4768-b698-7901eb421bd7
                Copyright © 2022 Lu, Hu, Pang, Wang, Li, Li, Yang and You.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 January 2022
                : 03 June 2022
                Page count
                Figures: 2, Tables: 4, Equations: 0, References: 29, Pages: 10, Words: 6840
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                enterobacteriaceae,β-lactamases,specific peptides,detection,prm
                Microbiology & Virology
                enterobacteriaceae, β-lactamases, specific peptides, detection, prm

                Comments

                Comment on this article