8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fast generations of tree-type three-dimensional entanglement via Lewis-Riesenfeld invariants and transitionless quantum driving

      research-article
      1 , a , 1 , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, a novel three-dimensional entangled state called tree-type entanglement, which is likely to have applications for improving quantum communication security, was prepared via adiabatic passage by Song et al. Here we propose two schemes for fast generating tree-type three-dimensional entanglement among three spatially separated atoms via shortcuts to adiabatic passage. With the help of quantum Zeno dynamics, two kinds of different but equivalent methods, Lewis-Riesenfeld invariants and transitionless quantum driving, are applied to construct shortcuts to adiabatic passage. The comparisons between the two methods are discussed. The strict numerical simulations show that the tree-type three-dimensional entangled states can be fast prepared with quite high fidelities and the two schemes are both robust against the variations in the parameters, atomic spontaneous emissions and the cavity-fiber photon leakages.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum information and computation

          In information processing, as in physics, our classical world view provides an incomplete approximation to an underlying quantum reality. Quantum effects like interference and entanglement play no direct role in conventional information processing, but they can--in principle now, but probably eventually in practice--be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Entanglement of the orbital angular momentum states of photons.

            Entangled quantum states are not separable, regardless of the spatial separation of their components. This is a manifestation of an aspect of quantum mechanics known as quantum non-locality. An important consequence of this is that the measurement of the state of one particle in a two-particle entangled state defines the state of the second particle instantaneously, whereas neither particle possesses its own well-defined state before the measurement. Experimental realizations of entanglement have hitherto been restricted to two-state quantum systems, involving, for example, the two orthogonal polarization states of photons. Here we demonstrate entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum. As these modes can be used to define an infinitely dimensional discrete Hilbert space, this approach provides a practical route to entanglement that involves many orthogonal quantum states, rather than just two Multi-dimensional entangled states could be of considerable importance in the field of quantum information, enabling, for example, more efficient use of communication channels in quantum cryptography.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Efficient classical simulation of slightly entangled quantum computations

              (2003)
              We present a scheme to efficiently simulate, with a classical computer, the dynamics of multipartite quantum systems on which the amount of entanglement (or of correlations in the case of mixed-state dynamics) is conveniently restricted. The evolution of a pure state of n qubits can be simulated by using computational resources that grow linearly in n and exponentially in the entanglement. We show that a pure-state quantum computation can only yield an exponential speed-up with respect to classical computations if the entanglement increases with the size n of the computation, and gives a lower bound on the required growth.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                26 September 2016
                2016
                : 6
                : 33669
                Affiliations
                [1 ]Department of Physics, College of Science, Yanbian University , Yanji, Jilin 133002, People’s Republic of China
                Author notes
                Article
                srep33669
                10.1038/srep33669
                5036061
                27667583
                2cfcbfaf-b381-43c2-a81c-0c206ebcfbe0
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 June 2016
                : 30 August 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article