39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer's disease

      1 , 2 , 2 , 3 , 1
      Immunology & Cell Biology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) accumulation, tau pathology and neuroinflammation. Recently, there has been considerable interest in the role of neuroinflammation in directly contributing to the progression of AD. Studies in mice and humans have identified a role for microglial cells, the resident innate immune cells of the central nervous system, in AD. Activated microglia are a key hallmark of the disease and the secretion of proinflammatory cytokines by microglia may result in a positive feedback loop between neurons and microglia, resulting in ongoing low-grade inflammation. Traditionally, the pathways of Aβ production and neuroinflammation have been considered independently; however, recent studies suggest that these processes may converge to promote the pathology associated with AD. Here we review the importance of inflammation and microglia in AD development and effects of inflammatory responses on cellular pathways of neurons, including Aβ generation.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Microglia Function in the Central Nervous System During Health and Neurodegeneration.

          Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases. Expected final online publication date for the Annual Review of Immunology Volume 35 is April 26, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            APP processing and synaptic function.

            A large body of evidence has implicated Abeta peptides and other derivatives of the amyloid precursor protein (APP) as central to the pathogenesis of Alzheimer's disease (AD). However, the functional relationship of APP and its proteolytic derivatives to neuronal electrophysiology is not known. Here, we show that neuronal activity modulates the formation and secretion of Abeta peptides in hippocampal slice neurons that overexpress APP. In turn, Abeta selectively depresses excitatory synaptic transmission onto neurons that overexpress APP, as well as nearby neurons that do not. This depression depends on NMDA-R activity and can be reversed by blockade of neuronal activity. Synaptic depression from excessive Abeta could contribute to cognitive decline during early AD. In addition, we propose that activity-dependent modulation of endogenous Abeta production may normally participate in a negative feedback that could keep neuronal hyperactivity in check. Disruption of this feedback system could contribute to disease progression in AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation

              Background Alzheimer's disease (AD) is characterized by extensive loss of neurons in the brain of AD patients. Intracellular accumulation of beta-amyloid peptide (Aβ) has also shown to occur in AD. Neuro-inflammation has been known to play a role in the pathogenesis of AD. Methods In this study, we investigated neuro-inflammation and amyloidogenesis and memory impairment following the systemic inflammation generated by lipopolysaccharide (LPS) using immunohistochemistry, ELISA, behavioral tests and Western blotting. Results Intraperitoneal injection of LPS, (250 μg/kg) induced memory impairment determined by passive avoidance and water maze tests in mice. Repeated injection of LPS (250 μg/kg, 3 or 7 times) resulted in an accumulation of Aβ1–42 in the hippocampus and cerebralcortex of mice brains through increased β- and γ-secretase activities accompanied with the increased expression of amyloid precursor protein (APP), 99-residue carboxy-terminal fragment of APP (C99) and generation of Aβ1–42 as well as activation of astrocytes in vivo. 3 weeks of pretreatment of sulindac sulfide (3.75 and 7.5 mg/kg, orally), an anti-inflammatory agent, suppressed the LPS-induced amyloidogenesis, memory dysfunction as well as neuronal cell death in vivo. Sulindac sulfide (12.5–50 μM) also suppressed LPS (1 μg/ml)-induced amyloidogenesis in cultured neurons and astrocytes in vitro. Conclusion This study suggests that neuro-inflammatory reaction could contribute to AD pathology, and anti-inflammatory agent could be useful for the prevention of AD.
                Bookmark

                Author and article information

                Journal
                Immunology & Cell Biology
                Immunol Cell Biol
                Wiley
                0818-9641
                1440-1711
                November 02 2019
                January 2020
                November 20 2019
                January 2020
                : 98
                : 1
                : 28-41
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville VIC Australia
                [2 ]Department of Neurodegenerative Disease and Geriatric Psychiatry University of Bonn Bonn Germany
                [3 ]German Center for Neurodegenerative Diseases Bonn Germany
                Article
                10.1111/imcb.12301
                31654430
                2be525ff-a7ef-4519-b150-1b4f383b9b62
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article