10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long Noncoding RNA UCA1 Accelerates Nasopharyngeal Carcinoma Cell Progression By Modulating miR-124-3p/ITGB1 Axis

      research-article
      1 , 2 , 1
      OncoTargets and therapy
      Dove
      NPC, proliferation, migration, UCA1, miR-124-3p, ITGB1

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Nasopharyngeal carcinoma (NPC) is a common malignant cancer that is distributed particularly in Southeastern Asia. Previous studies have manifested that long noncoding RNA urothelial carcinoma associated 1 (UCA1) was involved in NPC tumorigenesis and metastasis. However, the biological mechanism of UCA1 for NPC cell progression requires further investigation.

          Methods

          The expression levels of UCA1, miR-124-3p, integrin beta-1 (ITGB1) were detected by qRT-PCR. Protein expression of ITGB1 was determined by Western blot assay. Cell proliferation, migration and invasion were evaluated by CCK8 and transwell assay, respectively. The interaction between miR-124-3p and UCA1 or ITGB1 was determined by luciferase reporter system, RIP and RNA pull-down assay. Mice model was established by subcutaneously injecting SUNE1 cells stably transfected with sh-UCA1 and sh-NC.

          Results

          The expression of UCA1 was up-regulated in NPC tissues and cells. However, UCA1 knockdown hindered NPC cell growth, migration and invasion. In addition, the interaction between miR-124-3p and UCA1 or ITGB1 was confirmed by luciferase reporter system, RIP and RNA pull-down assay. Besides, miR-124-3p inhibitor abrogated UCA1 silencing-mediated suppression on cell progression in NPC. Moreover, UCA1 accelerated NPC cell progression through modulating ITGB1 via sponging miR-124-3p. In vivo experiments revealed the interference of UCA1-inhibited tumor growth by regulating miR-124-3p/ITGB1 axis.

          Conclusion

          UCA1 acts as an oncogene to promote NPC cell proliferation by up-regulating ITGB1 through suppressing miR-124-3p in vitro and in vivo, providing a potential target for NPC diagnosis and treatment.

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR-199a-5p

          Background Currently, the overall therapeutic efficiency of mesenchymal stem cells (MSCs) transplantation for the treatment of cardiovascular disease is not satisfactory. The low viability and angiogenic capacity of the implanted cells in the local infarct tissues restrict their further application. Evidence shows that long noncoding RNA H19 (lncRNA-H19) mediates cell survival and angiogenesis. Additionally, it is also involved in MSCs biological activities. This study aimed to explore the functional role of lncRNA-H19 in MSCs survival and angiogenic capacity as well as the underlying mechanism. Methods MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells at the third passage were divided into the following groups: MSCs+H19, MSCs+H19 NC, MSCs+si-H19, MSCs+si-H19 NC and MSCs. The MSCs+H19 and MSCs+H19 NC groups were transfected with lncRNA-H19 and lncRNA-H19 scramble RNA respectively. The MSCs+si-H19 and MSCs+si-H19 NC groups were transfected with lncRNA-H19 siRNA and lncRNA-H19 siRNA scramble respectively. MSCs were used as the blank control. All groups were exposed to normoxia (20% O2) and hypoxia (1% O2)/serum deprivation (H/SD) conditions for 24 h. Cell proliferation, apoptosis and vascular densities were assessed. Bioinformatics and dual luciferase reporter assay were performed. Relevant biomarkers were detected in different experimental groups. Results Overexpression of lncRNA-H19 improved survival and angiogenic capacity of MSCs under both normoxia and H/SD conditions, whereas its knockdown impaired cell viability and their angiogenic potential. MicroRNA-199a-5p (miR-199a-5p) targeted and downregulated vascular endothelial growth factor A (VEGFA). MiR-199a-5p was a target of lncRNA-H19. LncRNA-H19 transfection led to a decreased level of miR-199a-5p, accompanied with an elevated expression of VEGFA. However, both miR-199a-5p and VEGFA presented inverse alterations in the condition of lncRNA-H19 knockdown. Conclusions LncRNA-H19 enhanced MSCs survival and their angiogenic potential in vitro. It could directly upregulate VEGFA expression by inhibiting miR-199a-5p as a competing endogenous RNA. This mechanism contributes to a better understanding of MSCs biological activities and provides new insights for cell therapy based on MSCs transplantation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Long noncoding RNA RP4 functions as a competing endogenous RNA through miR-7-5p sponge activity in colorectal cancer

            AIM To investigate the role of long noncoding RNA (lncRNA) RP4 in colorectal cancer. METHODS Lentivirus-mediated lncRNA RP4 overexpression and knockdown were performed in the colorectal cancer cell line SW480. Cell proliferation, tumor growth, and early apoptosis were evaluated by a cell counting kit-8 assay, an in vivo xenograft tumor model, and annexin V/propidium iodide staining, respectively. Analysis of the lncRNA RP4 mechanism involved assessment of the association of its expression with miR-7-5p and the SH3GLB1 gene. Western blot analysis was also performed to assess the effect of lncRNA RP4 on the autophagy-mediated cell death pathway and phosphatidylinositol-3-kinase (PI3K)/Akt signaling. RESULTS Cell proliferation, tumor growth, and early apoptosis in SW480 cells were negatively regulated by lncRNA RP4. Functional experiments indicated that lncRNA RP4 directly upregulated SH3GLB1 expression by acting as a competing endogenous RNA (ceRNA) for miR-7-5p. This interaction led to activation of the autophagy-mediated cell death pathway and de-repression of PI3K and Akt phosphorylation in colorectal cancer cells in vivo. CONCLUSION Our results demonstrated that lncRNA RP4 is a ceRNA that plays an important role in the pathogenesis of colorectal cancer, and could be a potential therapeutic target for colorectal cancer treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Helicobacter pylori infection related long noncoding RNA (lncRNA) AF147447 inhibits gastric cancer proliferation and invasion by targeting MUC2 and up-regulating miR-34c

              Long non-coding RNAs (lncRNAs) were shown to play critical roles in cancer biology. We investigated whether H. pylori infection could promote gastric cancer by regulating lncRNAs expression. Differentially expressed lncRNAs between H. pylori positive and negative tissues were identified by microarray and validated by qRT-PCR. Our results indicated that H. pylori positive tissues have a specific profile of lncRNAs. Cell biological assays with siRNA-mediated knockdown or lentivirus vector-mediated over-expression were performed to probe the functional relevance of the lncRNAs. We identified an lncRNA-AF147447 decreased expressed by H. pylori infection, which can inhibit GC proliferation and invasion in vitro and in vivo, act as a tumor suppressor in the development of H. pylori induced GC. LncRNA AF147447 could repress MUC2 expression by direct binding or increasing miR-34c expression. We also found that transcription factor E2F1 could be recruited to lncRNA AF147447 promoter by RNA immunoprecipatation and RNA pull down assays. These findings support a role of lncRNA AF147447 in tumor suppression. This discovery contributes to a better understanding of the importance of the deregulated lncRNAs by H. pylori infection and provides a rationale for the potential development of lncRNA-based targeted approaches for the treatment of H. pylori-related gastric cancer.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OTT
                ott
                OncoTargets and therapy
                Dove
                1178-6930
                11 October 2019
                2019
                : 12
                : 8455-8466
                Affiliations
                [1 ]Department of Otolaryngology, Jining First People’s Hospital of Shandong Province , Jinning 272000, People’s Republic of China
                [2 ]Department of ENT, Zhangqiu District People’s Hospital , Jinan 250200, People’s Republic of China
                Author notes
                Correspondence: Hui Liu Department of Otolaryngology, Jining First People’s Hospital of Shandong Province , No. 6 Health Road, Rencheng District, Jinning, Shandong272000, People’s Republic of ChinaTel +86-0537-2253830 Email 15605471177@163.com
                Article
                215819
                10.2147/OTT.S215819
                6793467
                31632090
                2adc84da-4531-43c2-a63b-ea84736f122a
                © 2019 Liu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 15 May 2019
                : 05 September 2019
                Page count
                Figures: 7, Tables: 1, References: 31, Pages: 12
                Categories
                Original Research

                Oncology & Radiotherapy
                npc,proliferation,migration,uca1,mir-124-3p,itgb1
                Oncology & Radiotherapy
                npc, proliferation, migration, uca1, mir-124-3p, itgb1

                Comments

                Comment on this article