26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The mechanism of HMGB1 secretion and release

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High mobility group box 1 (HMGB1) is a nonhistone nuclear protein that has multiple functions according to its subcellular location. In the nucleus, HMGB1 is a DNA chaperone that maintains the structure and function of chromosomes. In the cytoplasm, HMGB1 can promote autophagy by binding to BECN1 protein. After its active secretion or passive release, extracellular HMGB1 usually acts as a damage-associated molecular pattern (DAMP) molecule, regulating inflammation and immune responses through different receptors or direct uptake. The secretion and release of HMGB1 is fine-tuned by a variety of factors, including its posttranslational modification (e.g., acetylation, ADP-ribosylation, phosphorylation, and methylation) and the molecular machinery of cell death (e.g., apoptosis, pyroptosis, necroptosis, alkaliptosis, and ferroptosis). In this minireview, we introduce the basic structure and function of HMGB1 and focus on the regulatory mechanism of HMGB1 secretion and release. Understanding these topics may help us develop new HMGB1-targeted drugs for various conditions, especially inflammatory diseases and tissue damage.

          Inflammation: Nuclear protein offers target for controlling immune response

          A nuclear protein that gets released after cell death or is actively secreted by immune cells offers a promising therapeutic target for treating diseases linked to excessive inflammation. Daolin Tang from the University of Texas Southwestern Medical Center in Dallas, USA, and colleagues review how cellular stresses can trigger the accumulation of HMGB1, a type of alarm signal protein that promotes the recruitment and activation of inflammation-promoting immune cells. The researchers discuss various mechanisms that drive both passive and active release of HMGB1 into the space around cells. These processes, which include enzymatic modifications of the HMGB1 protein, cell–cell interactions and molecular pathways of cell death, could be targeted by drugs to lessen tissue damage and inflammatory disease caused by HMGB1-induced immune responses

          Related collections

          Most cited references247

          • Record: found
          • Abstract: found
          • Article: not found

          Broadening horizons: the role of ferroptosis in cancer

          The discovery of regulated cell death processes has enabled advances in cancer treatment. In the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been implicated in the development and therapeutic responses of various types of tumours. Experimental reagents (such as erastin and RSL3), approved drugs (for example, sorafenib, sulfasalazine, statins and artemisinin), ionizing radiation and cytokines (such as IFNγ and TGFβ1) can induce ferroptosis and suppress tumour growth. However, ferroptotic damage can trigger inflammation-associated immunosuppression in the tumour microenvironment, thus favouring tumour growth. The extent to which ferroptosis affects tumour biology is unclear, although several studies have found important correlations between mutations in cancer-relevant genes (for example, RAS and TP53), in genes encoding proteins involved in stress response pathways (such as NFE2L2 signalling, autophagy and hypoxia) and the epithelial-to-mesenchymal transition, and responses to treatments that activate ferroptosis. Herein, we present the key molecular mechanisms of ferroptosis, describe the crosstalk between ferroptosis and tumour-associated signalling pathways, and discuss the potential applications of ferroptosis in the context of systemic therapy, radiotherapy and immunotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The molecular machinery of regulated cell death

            Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy promotes ferroptosis by degradation of ferritin.

              Macroautophagy/autophagy is an evolutionarily conserved degradation pathway that maintains homeostasis. Ferroptosis, a novel form of regulated cell death, is characterized by a production of reactive oxygen species from accumulated iron and lipid peroxidation. However, the relationship between autophagy and ferroptosis at the genetic level remains unclear. Here, we demonstrated that autophagy contributes to ferroptosis by degradation of ferritin in fibroblasts and cancer cells. Knockout or knockdown of Atg5 (autophagy-related 5) and Atg7 limited erastin-induced ferroptosis with decreased intracellular ferrous iron levels, and lipid peroxidation. Remarkably, NCOA4 (nuclear receptor coactivator 4) was a selective cargo receptor for the selective autophagic turnover of ferritin (namely ferritinophagy) in ferroptosis. Consistently, genetic inhibition of NCOA4 inhibited ferritin degradation and suppressed ferroptosis. In contrast, overexpression of NCOA4 increased ferritin degradation and promoted ferroptosis. These findings provide novel insight into the interplay between autophagy and regulated cell death.
                Bookmark

                Author and article information

                Contributors
                84172332@qq.com
                daolin.tang@utsouthwestern.edu
                Journal
                Exp Mol Med
                Exp Mol Med
                Experimental & Molecular Medicine
                Nature Publishing Group UK (London )
                1226-3613
                2092-6413
                25 February 2022
                25 February 2022
                February 2022
                : 54
                : 2
                : 91-102
                Affiliations
                [1 ]GRID grid.216417.7, ISNI 0000 0001 0379 7164, Department of Infectious Diseases, Xiangya Hospital, , Central South University, ; Changsha, Hunan 410008 China
                [2 ]GRID grid.216417.7, ISNI 0000 0001 0379 7164, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, , Central South University, ; Changsha, Hunan 410008 China
                [3 ]GRID grid.267313.2, ISNI 0000 0000 9482 7121, Department of Surgery, , UT Southwestern Medical Center, ; Dallas, TX USA
                Article
                736
                10.1038/s12276-022-00736-w
                8894452
                35217834
                2ab2a2bb-b10d-4716-9db1-02b281d35e2e
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 July 2021
                : 13 October 2021
                : 4 November 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 82070613
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2022

                Molecular medicine
                molecular biology,medical research
                Molecular medicine
                molecular biology, medical research

                Comments

                Comment on this article