In recent years, a drop in the condition of the European sardine has been observed. Although several causes have been attributed to this issue, as overfishing and climate change, little is known about the link between ascaridoid nematode parasitisation and fish status. In this study, sardines were obtained from four fishing grounds along the Mediterranean (Alboran, Northern Spain, Northern Adriatic, and Aegean), and one location in the Atlantic Ocean (Southern Portugal). After analysing individual fish body condition (by direct tissue fat content measurements and condition indices), and reproductive status (by a detailed gonadal examination) throughout the entire annual cycle, ascaridoids were recognised by combining naked eye and UV-press method along flesh, viscera, and gonads. Afterwards, sequence analysis of the rDNA internal transcribed spacers region (ITS) and the mtDNA cox2 gene were used to identify and characterise the different species of ascaridoids from the fish host in the localities throughout the seasons. The main species found along different areas was Hysterothylacium aduncum, present in the Northern Adriatic (prevalence of 7.6%, mean intensity 1.700), the Atlantic (7.5%, 3.889), and the Northern Spain (3.9%, 1.600). Moreover, few individuals of Anisakis simplex (s.s.) and A. pegreffii were observed in the Atlantic (1.7% and 0.8%, respectively), and the latter species was also found in the Adriatic stock (0.8%). All ascaridoid specimens were found in viscera. Obtained results seem to indicate that in stocks with medium sizes, small variations in length are related to parasite intensity. This study highlights the importance of seasonal parasitological analyses at stock level and, especially, in capital breeders, as relationships between condition and reproduction parameters and parasitism are conditioned by seasonality.
The main ascaridoid species found in sardine stocks was Hysterothylacium aduncum.
Species of the genus Anisakis were observed in the Atlantic and the Adriatic.
Negative link nematode load-host condition but potentially affected by seasonality.
Non-parasitised stocks (Alboran and Aegean) had different reproductive phenology.
Small length variations in medium-size sardines were related with their nematode load.