12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Validity of Wearable Activity Monitors during Cycling and Resistance Exercise :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of wearable activity monitors has seen rapid growth; however, the mode and intensity of exercise could affect the validity of heart rate (HR) and caloric (energy) expenditure (EE) readings. There is a lack of data regarding the validity of wearable activity monitors during graded cycling regimen and a standard resistance exercise. The present study determined the validity of eight monitors for HR compared with an ECG and seven monitors for EE compared with a metabolic analyzer during graded cycling and resistance exercise.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Validity of consumer-based physical activity monitors.

          Many consumer-based monitors are marketed to provide personal information on the levels of physical activity and daily energy expenditure (EE), but little or no information is available to substantiate their validity. This study aimed to examine the validity of EE estimates from a variety of consumer-based, physical activity monitors under free-living conditions. Sixty (26.4 ± 5.7 yr) healthy males (n = 30) and females (n = 30) wore eight different types of activity monitors simultaneously while completing a 69-min protocol. The monitors included the BodyMedia FIT armband worn on the left arm, the DirectLife monitor around the neck, the Fitbit One, the Fitbit Zip, and the ActiGraph worn on the belt, as well as the Jawbone Up and Basis B1 Band monitor on the wrist. The validity of the EE estimates from each monitor was evaluated relative to criterion values concurrently obtained from a portable metabolic system (i.e., Oxycon Mobile). Differences from criterion measures were expressed as a mean absolute percent error and were evaluated using 95% equivalence testing. For overall group comparisons, the mean absolute percent error values (computed as the average absolute value of the group-level errors) were 9.3%, 10.1%, 10.4%, 12.2%, 12.6%, 12.8%, 13.0%, and 23.5% for the BodyMedia FIT, Fitbit Zip, Fitbit One, Jawbone Up, ActiGraph, DirectLife, NikeFuel Band, and Basis B1 Band, respectively. The results from the equivalence testing showed that the estimates from the BodyMedia FIT, Fitbit Zip, and NikeFuel Band (90% confidence interval = 341.1-359.4) were each within the 10% equivalence zone around the indirect calorimetry estimate. The indicators of the agreement clearly favored the BodyMedia FIT armband, but promising preliminary findings were also observed with the Fitbit Zip.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Accuracy of Wrist-Worn Heart Rate Monitors.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How consumer physical activity monitors could transform human physiology research.

              A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing.
                Bookmark

                Author and article information

                Journal
                Medicine & Science in Sports & Exercise
                Medicine & Science in Sports & Exercise
                Ovid Technologies (Wolters Kluwer Health)
                0195-9131
                2018
                March 2018
                : 50
                : 3
                : 624-633
                Article
                10.1249/MSS.0000000000001471
                29189666
                298da730-a7e3-45cf-afce-865cba0dc2ee
                © 2018
                History

                Comments

                Comment on this article