22
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alleviation of temperature stress by nutrient management in crop plants: a review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effect of fertigation regimes on wheat grown in sandy soil was tested in two field experiments in Egypt. The aim of the study was to determine the vulnerability of wheat to extreme weather event under climate change scenarios. Eight fertigation treatments, in addition to farmer irrigation were tested. Two climate change scenarios obtained from Hadley climate change model were incorporated in CropSyst model to assess wheat yield responses to fertigation regimes under these scenarios. The results showed that the highest yield and the highest water use efficiency (WUE) was obtained under irrigation application using 1.2 and 0.8 of Etc, respectively, with fertigation application in 80% of application time in both growing seasons. The calibration of CropSyst model confirmed that the model is able to mimic the growth of wheat and predicted grain, biological yield, and WUE with high degree of accuracy. The highest yield reduction and the lowest WUE under the tested climate change scenarios were obtained from farmer irrigation. It can be concluded that irrigating wheat grown in sandy soil with an amount of either 1.0 or 0.8 of ETc with fertigation application in 80% of application time is recommended to enhance growth and yield, and to reduce wheat's damage caused by extreme climate change.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: not found
          • Article: not found

          Photoprotection and Other Responses of Plants to High Light Stress

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of high salinity tolerance in plants.

            Among abiotic stresses, high salinity stress is the most severe environmental stress, which impairs crop production on at least 20% of irrigated land worldwide. In response to high salinity stress, various genes get upregulated, the products of which are involved either directly or indirectly in plant protection. Some of the genes encoding osmolytes, ion channels, receptors, components of calcium signaling, and some other regulatory signaling factors or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. Overall, the susceptibility or tolerance to high salinity stress in plants is a coordinated action of multiple stress responsive genes, which also cross talk with other components of stress signal transduction pathways. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death; therefore, mechanisms of salinity tolerance involve sequestration of Na(+) and Cl(-) in vacuoles of the cells, blocking of Na(+) entry into the cell, Na(+) exclusion from the transpiration stream, and some other mechanisms that help in salinity tolerance. Understanding these mechanisms of stress tolerance, along with a plethora of genes involved in the stress signaling network, is important to improve high salinity stress tolerance in crops plants. This chapter first describes the adverse effect of salinity stress and general pathway for the plant stress response, followed by roles of various ion pumps, calcium, SOS pathways, ABA, transcription factors, mitogen-activated protein kinases, glycine betaine, proline, reactive oxygen species, and DEAD-box helicases in salinity stress tolerance. The cross-tolerance between stresses is also mentioned.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Role of the Plasma Membrane in Freezing Injury and Cold Acclimation

                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                jsspn
                Journal of soil science and plant nutrition
                J. Soil Sci. Plant Nutr.
                Chilean Society of Soil Science/Sociedad Chilena de la Ciencia del Suelo (Temuco )
                0718-9516
                2012
                : 12
                : 2
                : 221-244
                Affiliations
                [1 ] University of Western Australia Australia
                [2 ] Federal University of Agriculture Nigeria
                [3 ] Federal University of Agriculture Nigeria
                [4 ] University of Western Australia Australia
                Article
                S0718-95162012000200003
                10.4067/S0718-95162012000200003
                267a527d-ec93-49bf-b703-41780bc72760

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Chile

                Self URI (journal page): http://www.scielo.cl/scielo.php?script=sci_serial&pid=0718-9516&lng=en
                Categories
                SOIL SCIENCE

                Soil
                ertigation,wheat,sandy soil,CropSyst model,Hadley model,climate change scenarios
                Soil
                ertigation, wheat, sandy soil, CropSyst model, Hadley model, climate change scenarios

                Comments

                Comment on this article