277
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanodiamond–Gutta Percha Composite Biomaterials for Root Canal Therapy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Root canal therapy (RCT) represents a standard of treatment that addresses infected pulp tissue in teeth and protects against future infection. RCT involves removing dental pulp comprising blood vessels and nerve tissue, decontaminating residually infected tissue through biomechanical instrumentation, and root canal obturation using a filler material to replace the space that was previously composed of dental pulp. Gutta percha (GP) is typically used as the filler material, as it is malleable, inert, and biocompatible. While filling the root canal space with GP is the standard of care for endodontic therapies, it has exhibited limitations including leakage, root canal reinfection, and poor mechanical properties. To address these challenges, clinicians have explored the use of alternative root filling materials other than GP. Among the classes of materials that are being explored as novel endodontic therapy platforms, nanodiamonds (NDs) may offer unique advantages due to their favorable properties, particularly for dental applications. These include versatile faceted surface chemistry, biocompatibility, and their role in improving mechanical properties, among others. This study developed a ND-embedded GP (NDGP) that was functionalized with amoxicillin, a broad-spectrum antibiotic commonly used for endodontic infection. Comprehensive materials characterization confirmed improved mechanical properties of NDGP over unmodified GP. In addition, digital radiography and microcomputed tomography imaging demonstrated that obturation of root canals with NDGP could be achieved using clinically relevant techniques. Furthermore, bacterial growth inhibition assays confirmed drug functionality of NDGP functionalized with amoxicillin. This study demonstrates a promising path toward NDGP implementation in future endodontic therapy for improved treatment outcomes.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The properties and applications of nanodiamonds.

            Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans.

              Nanoscale carbon materials hold great promise for biotechnological and biomedical applications. Fluorescent nanodiamond (FND) is a recent new addition to members of the nanocarbon family. Here, we report long-term in vivo imaging of FNDs in Caenorhabditis elegans (C. elegans) and explore the nano-biointeractions between this novel nanomaterial and the model organism. FNDs are introduced into wild-type C. elegans by either feeding them with colloidal FND solution or microinjecting FND suspension into the gonads of the worms. On feeding, bare FNDs stay in the intestinal lumen, while FNDs conjugated with biomolecules (such as dextran and bovine serum albumin) are absorbed into the intestinal cells. On microinjection, FNDs are dispersed in the gonad and delivered to the embryos and eventually into the hatched larvae in the next generation. The toxicity assessments, performed by employing longevity and reproductive potential as physiological indicators and measuring stress responses with use of reporter genes, show that FNDs are stable and nontoxic and do not cause any detectable stress to the worms. The high brightness, excellent photostability, and nontoxic nature of the nanomaterial have enabled continuous imaging of the whole digestive system and tracking of the cellular and developmental processes of the living organism for several days.
                Bookmark

                Author and article information

                Journal
                ACS Nano
                ACS Nano
                nn
                ancac3
                ACS Nano
                American Chemical Society
                1936-0851
                1936-086X
                09 October 2015
                24 November 2015
                : 9
                : 11
                : 11490-11501
                Affiliations
                [1] Division of Oral Biology and Medicine, §Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, #Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry , Los Angeles, California 90095, United States
                []Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California 90095, United States
                [4] Jonsson Comprehensive Cancer Center and California NanoSystems Institute, UCLA , Los Angeles, California 90095, United States
                []UCLA Broad Stem Cell Research Center , Box 957357, Los Angeles, California 90095, United States
                []Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States
                Author notes
                Article
                10.1021/acsnano.5b05718
                4660386
                26452304
                25cf5d70-0cbe-40b6-8956-6dae33a64851
                Copyright © 2015 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 11 September 2015
                : 09 October 2015
                Categories
                Article
                Custom metadata
                nn5b05718
                nn-2015-05718u

                Nanotechnology
                nanomedicine,dentistry,biomaterials,drug delivery,root canal therapy,gutta percha,endodontics

                Comments

                Comment on this article