1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elevated Serum Lactate in Glioma Patients: Associated Factors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Serum lactate levels in brain cancer patients correlate with tumor malignancy grading, and serum lactate has been suggested as a potential biomarker and prognostic factor. The purpose of this study was to identify potential sources of elevated serum lactate in patients with brain gliomas by examining factors of importance for serum lactate production and clearance.

          Methods

          In this cross-sectional study, data were collected from 261 glioma patients who underwent surgery from March 2011 to June 2015. We recorded patient gender, age, blood serum measures of lactate, glucose, pH, hemoglobin and base excess, patient health status, medications, and tumor characteristics. Patients with elevated and normal serum lactate levels were compared, and we explored if there were correlations between the variables. The association of serum lactate with the measured variables was investigated by simple and multivariable linear regression models.

          Results and Discussion

          Patients with elevated serum lactate had higher blood glucose, larger tumor volumes, and more tumor edema; more often needed pressor medication during surgery; and more often received corticosteroid treatment. The investigated variables were highly correlated. Multivariable linear regression indicated that gender, tumor volume, Charlson Comorbidity Index, hyperglycemia, and corticosteroid treatment were associated with serum lactate levels. Histopathology was not an independent factor. In conclusion, comorbidities, hyperglycemia, and presurgical corticosteroid treatment exhibited the strongest association with serum lactate in glioma patients.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found

          The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.

          The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the Origin of Cancer Cells

            O WARBURG (1956)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibitory effect of tumor cell-derived lactic acid on human T cells.

              A characteristic feature of tumors is high production of lactic acid due to enhanced glycolysis. Here, we show a positive correlation between lactate serum levels and tumor burden in cancer patients and examine the influence of lactic acid on immune functions in vitro. Lactic acid suppressed the proliferation and cytokine production of human cytotoxic T lymphocytes (CTLs) up to 95% and led to a 50% decrease in cytotoxic activity. A 24-hour recovery period in lactic acid-free medium restored CTL function. CTLs infiltrating lactic acid-producing multicellular tumor spheroids showed a reduced cytokine production. Pretreatment of tumor spheroids with an inhibitor of lactic acid production prevented this effect. Activated T cells themselves use glycolysis and rely on the efficient secretion of lactic acid, as its intracellular accumulation disturbs their metabolism. Export by monocarboxylate transporter-1 (MCT-1) depends on a gradient between cytoplasmic and extracellular lactic acid concentrations and consequently, blockade of MCT-1 resulted in impaired CTL function. We conclude that high lactic acid concentrations in the tumor environment block lactic acid export in T cells, thereby disturbing their metabolism and function. These findings suggest that targeting this metabolic pathway in tumors is a promising strategy to enhance tumor immunogenicity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                19 May 2022
                2022
                : 12
                : 831079
                Affiliations
                [1] 1 Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology , Trondheim, Norway
                [2] 2 Department of Anaesthesia and Intensive Care, Nord-Trondelag Health Trust , Levanger, Norway
                [3] 3 Department of Neurosurgery, St. Olav’s Hospital, Trondheim University Hospital , Trondheim, Norway
                [4] 4 Department of Neuromedicine and Movement Science, Faculty of Medicine, NTNU, Norwegian University of Science and Technology , Trondheim, Norway
                Author notes

                Edited by: Jens Gempt, Technical University of Munich, Germany

                Reviewed by: Victoria Bunik, Lomonosov Moscow State University, Russia; Claire Delbridge, Technical University of Munich, Germany

                *Correspondence: Beathe Sitter, beathe.sitter@ 123456ntnu.no

                This article was submitted to Neuro-Oncology and Neurosurgical Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2022.831079
                9161145
                35664752
                23e8d9fe-b9a1-4391-a5fa-e5ecbf1dae4e
                Copyright © 2022 Sitter, Forsmark and Solheim

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 December 2021
                : 19 April 2022
                Page count
                Figures: 0, Tables: 4, Equations: 0, References: 24, Pages: 7, Words: 3854
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                glioma,lactate,hyperlactatemia,biomarker,corticosteroid
                Oncology & Radiotherapy
                glioma, lactate, hyperlactatemia, biomarker, corticosteroid

                Comments

                Comment on this article