11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Significance: Fibrosis is the endpoint of chronic disease in multiple organs, including the skin, heart, lungs, intestine, liver, and kidneys. Pathologic accumulation of fibrotic tissue results in a loss of structural integrity and function, with resultant increases in morbidity and mortality. Understanding the pathways governing fibrosis and identifying therapeutic targets within those pathways is necessary to develop novel antifibrotic therapies for fibrotic disease.

          Recent Advances: Given the connection between inflammation and fibrogenesis, Interleukin-10 (IL-10) has been a focus of potential antifibrotic therapies because of its well-known role as an anti-inflammatory mediator. Despite the apparent dissimilarity of diseases associated with fibrotic progression, pathways involving IL-10 appear to be a conserved molecular theme. More recently, many groups have worked to develop novel delivery tools for recombinant IL-10, such as hydrogels, and cell-based therapies, such as ex vivo activated macrophages, to directly or indirectly modulate IL-10 signaling.

          Critical Issues: Some efforts in this area, however, have been stymied by IL-10's pleiotropic and sometimes conflicting effects. A deeper, contextual understanding of IL-10 signaling and its interaction with effector cells, particularly immune cells, will be critical to future studies in the field.

          Future Directions: IL-10 is clearly a gatekeeper of fibrotic/antifibrotic signaling. The development of novel therapeutics and cell-based therapies that capitalize on targets within the IL-10 signaling pathway could have far-reaching implications for patients suffering from the consequences of organ fibrosis.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophages: master regulators of inflammation and fibrosis.

          Macrophages are found in close proximity with collagen-producing myofibroblasts and indisputably play a key role in fibrosis. They produce profibrotic mediators that directly activate fibroblasts, including transforming growth factor-beta1 and platelet-derived growth factor, and control extracellular matrix turnover by regulating the balance of various matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Macrophages also regulate fibrogenesis by secreting chemokines that recruit fibroblasts and other inflammatory cells. With their potential to act in both a pro- and antifibrotic capacity, as well as their ability to regulate the activation of resident and recruited myofibroblasts, macrophages and the factors they express are integrated into all stages of the fibrotic process. These various, and sometimes opposing, functions may be performed by distinct macrophage subpopulations, the identification of which is a growing focus of fibrosis research. Although collagen-secreting myofibroblasts once were thought of as the master "producers" of fibrosis, this review will illustrate how macrophages function as the master "regulators" of fibrosis. Copyright Thieme Medical Publishers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An Essential Role for Interleukin 10 in the Function of Regulatory T Cells That Inhibit Intestinal Inflammation

            A T helper cell type 1–mediated colitis develops in severe combined immunodeficient mice after transfer of CD45RBhigh CD4+ T cells and can be prevented by cotransfer of the CD45RBlow subset. The immune-suppressive activities of the CD45RBlow T cell population can be reversed in vivo by administration of an anti-transforming growth factor β antibody. Here we show that interleukin (IL)-10 is an essential mediator of the regulatory functions of the CD45RBlow population. This population isolated from IL-10–deficient (IL-10−/−) mice was unable to protect from colitis and when transferred alone to immune-deficient recipients induced colitis. Treatment with an anti–murine IL-10 receptor monoclonal antibody abrogated inhibition of colitis mediated by wild-type (WT) CD45RBlow CD4+ cells, suggesting that IL-10 was necessary for the effector function of the regulatory T cell population. Inhibition of colitis by WT regulatory T cells was not dependent on IL-10 production by progeny of the CD45RBhigh CD4+ cells, as CD45RBlow CD4+ cells from WT mice were able to inhibit colitis induced by IL-10−/− CD45RBhigh CD4+ cells. These findings provide the first clear evidence that IL-10 plays a nonredundant role in the functioning of regulatory T cells that control inflammatory responses towards intestinal antigens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function.

              Intact interleukin-10 receptor (IL-10R) signaling on effector and T regulatory (Treg) cells are each independently required to maintain immune tolerance. Here we show that IL-10 sensing by innate immune cells, independent of its effects on T cells, was critical for regulating mucosal homeostasis. Following wild-type (WT) CD4(+) T cell transfer, Rag2(-/-)Il10rb(-/-) mice developed severe colitis in association with profound defects in generation and function of Treg cells. Moreover, loss of IL-10R signaling impaired the generation and function of anti-inflammatory intestinal and bone-marrow-derived macrophages and their ability to secrete IL-10. Importantly, transfer of WT but not Il10rb(-/-) anti-inflammatory macrophages ameliorated colitis induction by WT CD4(+) T cells in Rag2(-/-)Il10rb(-/-) mice. Similar alterations in the generation and function of anti-inflammatory macrophages were observed in IL-10R-deficient patients with very early onset inflammatory bowel disease. Collectively, our studies define innate immune IL-10R signaling as a key factor regulating mucosal immune homeostasis in mice and humans.
                Bookmark

                Author and article information

                Journal
                Adv Wound Care (New Rochelle)
                Adv Wound Care (New Rochelle)
                wound
                Advances in Wound Care
                Mary Ann Liebert, Inc., publishers (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                2162-1918
                2162-1934
                April 2020
                07 February 2020
                07 February 2020
                : 9
                : 4
                : 184-198
                Affiliations
                [ 1 ]Department of Surgery, Baylor College of Medicine, Houston, Texas.
                [ 2 ]Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas.
                [ 3 ]Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, California.
                [ 4 ]Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California.
                [ 5 ]Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, Texas.
                Author notes
                [*] [ * ]Correspondence: Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, 6701 Fannin Street Suite 1210, Houston, TX 77030 keswani@ 123456bcm.edu
                Article
                10.1089/wound.2019.1032
                10.1089/wound.2019.1032
                7047112
                32117582
                22f93a3d-2206-4e7f-959b-9bf39e8cab16
                © Emily H. Steen, et al., 2020; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : Submitted for publication May 24, 2019
                : Accepted in revised form June 18, 2019
                Page count
                Figures: 6, Tables: 1, References: 132, Pages: 15
                Categories
                Comprehensive Invited Review

                interleukin-10,hyaluronan,extracellular matrix,fibrosis,cell biology

                Comments

                Comment on this article