9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oral Iron Supplementation—Gastrointestinal Side Effects and the Impact on the Gut Microbiota

      , ,
      Microbiology Research
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Iron deficiency anaemia (IDA) is a worldwide healthcare problem affecting approximately 25% of the global population. The most common IDA treatment is oral iron supplementation, which has been associated with gastrointestinal (GI) side effects such as constipation and bloating. These can result in treatment non-adherence and the persistence of IDA. Intravenous iron does not cause GI side effects, which may be due to the lack of exposure to the intestinal lumen. Luminal iron can cause changes to the gut microbiota, aiding the promotion of pathogenic species and decreasing beneficial protective species. Iron is vital for methanogenic archaea, which rely on iron for growth and metabolism. Increased intestinal methane has been associated with slowing of intestinal transit, constipation, and bloating. Here we explore the literature to understand a potential link between iron and methanogenesis as a novel way to understand the mechanism of oral iron supplementation induced GI side effects.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ferrous Sulfate Supplementation Causes Significant Gastrointestinal Side-Effects in Adults: A Systematic Review and Meta-Analysis

          Background The tolerability of oral iron supplementation for the treatment of iron deficiency anemia is disputed. Objective Our aim was to quantify the odds of GI side-effects in adults related to current gold standard oral iron therapy, namely ferrous sulfate. Methods Systematic review and meta-analysis of randomized controlled trials (RCTs) evaluating GI side-effects that included ferrous sulfate and a comparator that was either placebo or intravenous (IV) iron. Random effects meta-analysis modelling was undertaken and study heterogeneity was summarised using I2 statistics. Results Forty three trials comprising 6831 adult participants were included. Twenty trials (n = 3168) had a placebo arm and twenty three trials (n = 3663) had an active comparator arm of IV iron. Ferrous sulfate supplementation significantly increased risk of GI side-effects versus placebo with an odds ratio (OR) of 2.32 [95% CI 1.74–3.08, p<0.0001, I2 = 53.6%] and versus IV iron with an OR of 3.05 [95% CI 2.07-4.48, p<0.0001, I2 = 41.6%]. Subgroup analysis in IBD patients showed a similar effect versus IV iron (OR = 3.14, 95% CI 1.34-7.36, p = 0.008, I2 = 0%). Likewise, subgroup analysis of pooled data from 7 RCTs in pregnant women (n = 1028) showed a statistically significant increased risk of GI side-effects for ferrous sulfate although there was marked heterogeneity in the data (OR = 3.33, 95% CI 1.19-9.28, p = 0.02, I2 = 66.1%). Meta-regression did not provide significant evidence of an association between the study OR and the iron dose. Conclusions Our meta-analysis confirms that ferrous sulfate is associated with a significant increase in gastrointestinal-specific side-effects but does not find a relationship with dose.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nutritional iron deficiency.

            Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming monotonous plant-based diets. The high prevalence of iron deficiency in the developing world has substantial health and economic costs, including poor pregnancy outcome, impaired school performance, and decreased productivity. Recent studies have reported how the body regulates iron absorption and metabolism in response to changing iron status by upregulation or downregulation of key intestinal and hepatic proteins. Targeted iron supplementation, iron fortification of foods, or both, can control iron deficiency in populations. Although technical challenges limit the amount of bioavailable iron compounds that can be used in food fortification, studies show that iron fortification can be an effective strategy against nutritional iron deficiency. Specific laboratory measures of iron status should be used to assess the need for fortification and to monitor these interventions. Selective plant breeding and genetic engineering are promising new approaches to improve dietary iron nutritional quality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women.

              Iron supplements acutely increase hepcidin, but the duration and magnitude of the increase, its dose dependence, and its effects on subsequent iron absorption have not been characterized in humans. Better understanding of these phenomena might improve oral iron dosing schedules. We investigated whether the acute iron-induced increase in hepcidin influences iron absorption of successive daily iron doses and twice-daily iron doses. We recruited 54 nonanemic young women with plasma ferritin ≤20 µg/L and conducted: (1) a dose-finding investigation with 40-, 60-, 80-, 160-, and 240-mg labeled Fe as [(57)Fe]-, [(58)Fe]-, or [(54)Fe]-FeSO4 given at 8:00 am fasting on 1 or on 2 consecutive days (study 1, n = 25; study 2, n = 16); and (2) a study giving three 60-mg Fe doses (twice-daily dosing) within 24 hours (study 3, n = 13). In studies 1 and 2, 24 hours after doses ≥60 mg, serum hepcidin was increased (P < .01) and fractional iron absorption was decreased by 35% to 45% (P < .01). With increasing dose, fractional absorption decreased (P < .001), whereas absolute absorption increased (P < .001). A sixfold increase in iron dose (40-240 mg) resulted in only a threefold increase in iron absorbed (6.7-18.1 mg). In study 3, total iron absorbed from 3 doses (2 mornings and an afternoon) was not significantly greater than that from 2 morning doses. Providing lower dosages (40-80 mg Fe) and avoiding twice-daily dosing maximize fractional absorption. The duration of the hepcidin response supports alternate day supplementation, but longer-term effects of these schedules require further investigation. These clinical trials were registered at www.ClinicalTrials.gov as #NCT01785407 and #NCT02050932.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Microbiology Research
                Microbiology Research
                MDPI AG
                2036-7481
                June 2021
                June 12 2021
                : 12
                : 2
                : 491-502
                Article
                10.3390/microbiolres12020033
                22e0d065-9d87-443c-a6ee-e6ff8fb9e37b
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article