1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved and Highly Reproducible Synthesis of Methacrylated Hyaluronic Acid with Tailored Degrees of Substitution

      research-article
      ,
      ACS Omega
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methacrylated hyaluronic acid (HAMA) is a versatile material that has gained significant attention in various pharmaceutical and biomedical applications. This biocompatible material can be photo-cross-linked in the presence of Irgacure 2959 (I2959) to produce hydrogels. Controlling the degree of methacrylation (DM) is crucial since it plays a pivotal role in determining the properties and thus the potential applications of the gels. We report herein a new green approach for the highly controlled and tailored modification of hyaluronic acid (HA) with methacrylic anhydride (MA). The reaction conditions of previously reported procedures were optimized, leading to a decreased reaction time (3 h instead of 24 h) and consumption of fewer equivalents of MA (5 equiv instead of 20) and water as the sole solvent. By changing the amount of base added, HAMA with three different DMs was obtained: 19, 35, and 60%. The influence of the molecular weight of HA, degree of substitution, and concentration of the HAMA solution prior to photo-cross-linking on the rheological, swelling, and degradation properties of HAMA hydrogels was also studied in this work.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyaluronan fragments: an information-rich system.

            Hyaluronan is a straight chain, glycosaminoglycan polymer of the extracellular matrix composed of repeating units of the disaccharide [-D-glucuronic acid-beta1,3-N-acetyl-D-glucosamine-beta1,4-]n. Hyaluronan is synthesized in mammals by at least three synthases with products of varying chain lengths. It has an extraordinary high rate of turnover with polymers being funneled through three catabolic pathways. At the cellular level, it is degraded progressively by a series of enzymatic reactions that generate polymers of decreasing sizes. Despite their exceedingly simple primary structure, hyaluronan fragments have extraordinarily wide-ranging and often opposing biological functions. There are large hyaluronan polymers that are space-filling, anti-angiogenic, immunosuppressive, and that impede differentiation, possibly by suppressing cell-cell interactions, or ligand access to cell surface receptors. Hyaluronan chains, which can reach 2 x 10(4) kDa in size, are involved in ovulation, embryogenesis, protection of epithelial layer integrity, wound repair, and regeneration. Smaller polysaccharide fragments are inflammatory, immuno-stimulatory and angiogenic. They can also compete with larger hyaluronan polymers for receptors. Low-molecular-size polymers appear to function as endogenous "danger signals", while even smaller fragments can ameliorate these effects. Tetrasaccharides, for example, are anti-apoptotic and inducers of heat shock proteins. Various fragments trigger different signal transduction pathways. Particular hyaluronan polysaccharides are also generated by malignant cells in order to co-opt normal cellular functions. How the small hyaluronan fragments are generated is unknown, nor is it established whether the enzymes of hyaluronan synthesis and degradation are involved in maintaining proper polymer sizes and concentration. The vast range of activities of hyaluronan polymers is reviewed here, in order to determine if patterns can be detected that would provide insight into their production and regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks.

              Hyaluronic acid is a natural polysaccharide found abundantly throughout the body with many desirable properties for application as a biomaterial, including scaffolding for tissue engineering. In this work, hyaluronic acid with molecular weights ranging from 50 to 1100 kDa was modified with methacrylic anhydride and photopolymerized into networks with a wide range of physical properties. With macromer concentrations from 2 to 20 wt %, networks exhibited volumetric swelling ratios ranging from approximately 42 to 8, compressive moduli ranging from approximately 2 to over 100 kPa, and degradation times ranging from less than 1 day up to almost 38 days in the presence of 100 U/mL of hyaluronidase. When 3T3-fibroblasts were photoencapsulated in the hydrogels, cells remained viable with low macromer concentrations but decreased sequentially as the macromer concentration increased. Finally, auricular swine chondrocytes produced neocartilage when photoencapsulated in the hyaluronic acid networks. This work presents a next step toward the development of advanced in vivo curable biomaterials.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                06 June 2024
                18 June 2024
                : 9
                : 24
                : 25914-25921
                Affiliations
                [1]School of Biological and Chemical Sciences, University of Galway , Galway H91 TK33, Ireland
                Author notes
                Author information
                https://orcid.org/0000-0002-7309-8972
                Article
                10.1021/acsomega.4c00372
                11191076
                38911780
                225cf209-6a24-4661-a5c8-a5dcaa6d868b
                © 2024 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 11 January 2024
                : 28 May 2024
                : 11 May 2024
                Funding
                Funded by: HORIZON EUROPE European Innovation Council, doi 10.13039/100018703;
                Award ID: MF20200114
                Categories
                Article
                Custom metadata
                ao4c00372
                ao4c00372

                Comments

                Comment on this article