21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Enlightenment About Etiology and Pharmacological Treatment of Autism Spectrum Disorder

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autistic Spectrum Disorder (ASD) is a complex neurodevelopmental brain disorder characterized by two core behavioral symptoms, namely impairments in social communication and restricted/repetitive behavior. The molecular mechanisms underlying ASD are not well understood. Recent genetic as well as non-genetic animal models contributed significantly in understanding the pathophysiology of ASD, as they establish autism-like behavior in mice and rats. Among the genetic causes, several chromosomal mutations including duplications or deletions could be possible causative factors of ASD. In addition, the biochemical basis suggests that several brain neurotransmitters, e.g., dopamine (DA), serotonin (5-HT), gamma-amino butyric acid (GABA), acetylcholine (ACh), glutamate (Glu) and histamine (HA) participate in the onset and progression of ASD. Despite of convincible understanding, risperidone and aripiprazole are the only two drugs available clinically for improving behavioral symptoms of ASD following approval by Food and Drug Administration (FDA). Till date, up to our knowledge there is no other drug approved for clinical usage specifically for ASD symptoms. However, many novel drug candidates and classes of compounds are underway for ASD at different phases of preclinical and clinical drug development. In this review, the diversity of numerous aetiological factors and the alterations in variety of neurotransmitter generation, release and function linked to ASD are discussed with focus on drugs currently used to manage neuropsychiatric symptoms related to ASD. The review also highlights the clinical development of drugs with emphasis on their pharmacological targets aiming at improving core symptoms in ASD.

          Related collections

          Most cited references222

          • Record: found
          • Abstract: found
          • Article: not found

          Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

          Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Animal models of neuropsychiatric disorders.

            Modeling of human neuropsychiatric disorders in animals is extremely challenging given the subjective nature of many symptoms, the lack of biomarkers and objective diagnostic tests, and the early state of the relevant neurobiology and genetics. Nonetheless, progress in understanding pathophysiology and in treatment development would benefit greatly from improved animal models. Here we review the current state of animal models of mental illness, with a focus on schizophrenia, depression and bipolar disorder. We argue for areas of focus that might increase the likelihood of creating more useful models, at least for some disorders, and for explicit guidelines when animal models are reported.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent segmental duplications in the human genome.

              Primate-specific segmental duplications are considered important in human disease and evolution. The inability to distinguish between allelic and duplication sequence overlap has hampered their characterization as well as assembly and annotation of our genome. We developed a method whereby each public sequence is analyzed at the clone level for overrepresentation within a whole-genome shotgun sequence. This test has the ability to detect duplications larger than 15 kilobases irrespective of copy number, location, or high sequence similarity. We mapped 169 large regions flanked by highly similar duplications. Twenty-four of these hot spots of genomic instability have been associated with genetic disease. Our analysis indicates a highly nonrandom chromosomal and genic distribution of recent segmental duplications, with a likely role in expanding protein diversity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                16 May 2018
                2018
                : 12
                : 304
                Affiliations
                [1] 1Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain, United Arab Emirates
                [2] 2Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain, United Arab Emirates
                [3] 3Department of Clinical Pharmacy, College of Pharmacy, Al Ain University of Science and Technology , Al Ain, United Arab Emirates
                [4] 4School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin , Dublin, Ireland
                Author notes

                Edited by: Francisco Lopez-Munoz, Universidad Camilo José Cela, Spain

                Reviewed by: Dr. Girish Kumar Gupta, Maharishi Markandeshwar University, Mullana, India; Mohamed M. Abdel-Daim, Suez Canal University, Egypt

                *Correspondence: Bassem Sadek bassem.sadek@ 123456uaeu.ac.ae

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2018.00304
                5964170
                29867317
                1e11fedd-cec6-475c-8b93-b2af0c53cace
                Copyright © 2018 Eissa, Al-Houqani, Sadeq, Ojha, Sasse and Sadek.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 October 2017
                : 19 April 2018
                Page count
                Figures: 3, Tables: 4, Equations: 0, References: 249, Pages: 26, Words: 18993
                Funding
                Funded by: United Arab Emirates University 10.13039/501100006013
                Categories
                Neuroscience
                Review

                Neurosciences
                autistic spectrum disorder,genetic factors,environmental factors,neurotransmitter dysfunctions,neurodegeneration,neuroprotection,cognitive deficits,pharmacological intervention

                Comments

                Comment on this article