3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Targeting E3 Ubiquitin Ligase WWP1 Prevents Cardiac Hypertrophy Through Destabilizing DVL2 via Inhibition of K27-Linked Ubiquitination

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Without adequate treatment, pathological cardiac hypertrophy induced by sustained pressure overload eventually leads to heart failure. WWP1 (WW domain–containing E3 ubiquitin protein ligase 1) is an important regulator of aging-related pathologies, including cancer and cardiovascular diseases. However, the role of WWP1 in pressure overload–induced cardiac remodeling and heart failure is yet to be determined.

          Methods:

          To examine the correlation of WWP1 with hypertrophy, we analyzed WWP1 expression in patients with heart failure and mice subjected to transverse aortic constriction (TAC) by Western blotting and immunohistochemical staining. TAC surgery was performed on WWP1 knockout mice to assess the role of WWP1 in cardiac hypertrophy, heart function was examined by echocardiography, and related cellular and molecular markers were examined. Mass spectrometry and coimmunoprecipitation assays were conducted to identify the proteins that interacted with WWP1. Pulse-chase assay, ubiquitination assay, reporter gene assay, and an in vivo mouse model via AAV9 (adeno-associated virus serotype 9) were used to explore the mechanisms by which WWP1 regulates cardiac remodeling. AAV9 carrying cardiac troponin T (cTnT) promoter–driven small hairpin RNA targeting WWP1 (AAV9-cTnT-shWWP1) was administered to investigate its rescue role in TAC-induced cardiac dysfunction.

          Results:

          The WWP1 level was significantly increased in the hypertrophic hearts from patients with heart failure and mice subjected to TAC. The results of echocardiography and histology demonstrated that WWP1 knockout protected the heart from TAC-induced hypertrophy. There was a direct interaction between WWP1 and DVL2 (disheveled segment polarity protein 2). DVL2 was stabilized by WWP1-mediated K27-linked polyubiquitination. The role of WWP1 in pressure overload–induced cardiac hypertrophy was mediated by the DVL2/CaMKII/HDAC4/MEF2C signaling pathway. Therapeutic targeting WWP1 almost abolished TAC induced heart dysfunction, suggesting WWP1 as a potential target for treating cardiac hypertrophy and failure.

          Conclusions:

          We identified WWP1 as a key therapeutic target for pressure overload induced cardiac remodeling. We also found a novel mechanism regulated by WWP1. WWP1 promotes atypical K27-linked ubiquitin multichain assembly on DVL2 and exacerbates cardiac hypertrophy by the DVL2/CaMKII/HDAC4/MEF2C pathway.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association

          Circulation, 139(10)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ubiquitin modifications

            Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation.

              All seven lysine residues in ubiquitin contribute to the synthesis of polyubiquitin chains on protein substrates. Whereas K48-linked chains are well established as mediators of proteasomal degradation, and K63-linked chains act in nonproteolytic events, the roles of unconventional polyubiquitin chains linked through K6, K11, K27, K29, or K33 are not well understood. Here, we report that the unconventional linkages are abundant in vivo and that all non-K63 linkages may target proteins for degradation. Ubiquitin with K48 as the single lysine cannot support yeast viability, and different linkages have partially redundant functions. By profiling both the entire yeast proteome and ubiquitinated proteins in wild-type and ubiquitin K11R mutant strains using mass spectrometry, we identified K11 linkage-specific substrates, including Ubc6, a ubiquitin-conjugating enzyme involved in endoplasmic reticulum-associated degradation (ERAD). Ubc6 primarily synthesizes K11-linked chains, and K11 linkages function in the ERAD pathway. Thus, unconventional polyubiquitin chains are critical for ubiquitin-proteasome system function.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Circulation
                Circulation
                Ovid Technologies (Wolters Kluwer Health)
                0009-7322
                1524-4539
                August 31 2021
                August 31 2021
                : 144
                : 9
                : 694-711
                Affiliations
                [1 ]State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.).
                [2 ]The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China (G.Z.).
                [3 ]Medical College of Soochow University, Suzhou, China (J.P.).
                [4 ]Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China (Y.Z., H.S., Y.-Z.C.).
                [5 ]Department of Cardiology (T.L., W.L.), Beijing AnZhen Hospital, Capital Medical University, China.
                [6 ]Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (J.Z.).
                [7 ]Heart Transplantation and Valve Surgery Center (Y.J.), Beijing AnZhen Hospital, Capital Medical University, China.
                [8 ]Department of Cardiovascular Medicine, Chinese People's Liberation Army (PLA) General Hospital & Chinese PLA Medical School, Beijing (Z.L.).
                Article
                10.1161/CIRCULATIONAHA.121.054827
                34139860
                1d826d03-c5dd-4d39-8713-564ab2f1aec8
                © 2021
                History

                Comments

                Comment on this article