12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-weight-bearing exercise attenuates papain-induced knee osteoarthritis in rats via the TLR4/MyD88/NF-κB signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Aim

          Knee osteoarthritis (KOA) is characterized by joint wear and degeneration. Unfortunately, the medical community currently lacks effective treatment options for this disease. Suspension exercise therapy is considered an effective form of non-weight-bearing exercise for treating KOA. However, its mechanism of intervention in KOA is unclear. Therefore, this study aimed to evaluate the protective effects of non-weight-bearing exercise on rats with KOA and attempted to explore the underlying mechanisms.

          Methods

          In this study, a papain-induced KOA model was constructed, and the pathological changes in cartilage tissue were observed by hematoxylin and eosin (H&E) staining and scored according to the Mankin scoring principle. The serum levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay. Reverse transcription–quantitative polymerase chain reaction and Western blotting were used to detect the expression of mRNA and proteins in the TLR4/MyD88/NF-κB signaling pathway.

          Results

          H&E staining and Mankin score data confirmed that non-weight-bearing exercise significantly improved articular cartilage degradation compared with that in the model group. Further, we observed that non-weight-bearing exercise differentially reduced serum levels of IL-1β, IL-6, and TNF-α. Mechanistically, non-weight-bearing exercise downregulated gene and protein expression of TLR4, MyD88, and NF-κB in cartilage tissue.

          Conclusion

          Non-weight-bearing exercise resulted in the progression of KOA by modulating the TLR4/MyD88/NF-κB signaling pathway and decreasing the levels of the inflammatory cytokines IL-1β, IL-6, and TNF-α to slow down the degeneration of articular cartilage.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MyD88: a central player in innate immune signaling

          MyD88 is the canonical adaptor for inflammatory signaling pathways downstream of members of the Toll-like receptor (TLR) and interleukin-1 (IL-1) receptor families. MyD88 links IL-1 receptor (IL-1R) or TLR family members to IL-1R-associated kinase (IRAK) family kinases via homotypic protein-protein interaction. Activation of IRAK family kinases leads to a variety of functional outputs, including the activation of nuclear factor-kappa B (NFκB), mitogen-activated protein kinases, and activator protein 1, making MyD88 a central node of inflammatory pathways. As more details of MyD88-dependent signaling have been elucidated, it has become clear that the functions of this critical signaling component can be influenced by multiple interaction partners in distinct subcellular compartments. In this review, we will focus on recent developments in the understanding of the assembly of MyD88 signaling complexes and the mechanisms leading to the diversification of MyD88-based signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of the Toll Like Receptor (TLR) Radical Cycle in Chronic Inflammation: Possible Treatments Targeting the TLR4 Pathway

            Activation of the Toll-like receptor 4 (TLR4) complex, a receptor of the innate immune system, may underpin the pathophysiology of many human diseases, including asthma, cardiovascular disorder, diabetes, obesity, metabolic syndrome, autoimmune disorders, neuroinflammatory disorders, schizophrenia, bipolar disorder, autism, clinical depression, chronic fatigue syndrome, alcohol abuse, and toluene inhalation. TLRs are pattern recognition receptors that recognize damage-associated molecular patterns and pathogen-associated molecular patterns, including lipopolysaccharide (LPS) from gram-negative bacteria. Here we focus on the environmental factors, which are known to trigger TLR4, e.g., ozone, atmosphere particulate matter, long-lived reactive oxygen intermediate, pentachlorophenol, ionizing radiation, and toluene. Activation of the TLR4 pathways may cause chronic inflammation and increased production of reactive oxygen and nitrogen species (ROS/RNS) and oxidative and nitrosative stress and therefore TLR-related diseases. This implies that drugs or substances that modify these pathways may prevent or improve the abovementioned diseases. Here we review some of the most promising drugs and agents that have the potential to attenuate TLR-mediated inflammation, e.g., anti-LPS strategies that aim to neutralize LPS (synthetic anti-LPS peptides and recombinant factor C) and TLR4/MyD88 antagonists, including eritoran, CyP, EM-163, epigallocatechin-3-gallate, 6-shogaol, cinnamon extract, N-acetylcysteine, melatonin, and molecular hydrogen. The authors posit that activation of the TLR radical (ROS/RNS) cycle is a common pathway underpinning many “civilization” disorders and that targeting the TLR radical cycle may be an effective method to treat many inflammatory disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis.

              Osteoarthritis is a common cause of disability worldwide. Although commonly referred to as a disease of the joint cartilage, osteoarthritis affects all joint tissues equally. The pathogenesis of this degenerative process is not completely understood; however, a low-grade inflammation leading to an imbalance between anabolic and katabolic processes is a well-established factor. The complex network of cytokines regulating these processes and cell communication has a central role in the development and progression of osteoarthritis. Concentrations of both proinflammatory and anti-inflammatory cytokines were found to be altered depending on the osteoarthritis stage and activity. In this review, we analyzed individual cytokines involved in the immune processes with an emphasis on their function in osteoarthritis.
                Bookmark

                Author and article information

                Contributors
                yaochangfengxx@163.com
                Journal
                J Orthop Surg Res
                J Orthop Surg Res
                Journal of Orthopaedic Surgery and Research
                BioMed Central (London )
                1749-799X
                18 September 2023
                18 September 2023
                2023
                : 18
                : 695
                Affiliations
                GRID grid.252251.3, ISNI 0000 0004 1757 8247, College of Acupuncture and Massage, , Anhui University of Chinese Medicine, ; Hefei, 230012 Anhui China
                Article
                4201
                10.1186/s13018-023-04201-w
                10506300
                37718444
                1a06d2cd-cbe3-4420-8c11-c3bc726980f3
                © BioMed Central Ltd., part of Springer Nature 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 23 May 2023
                : 13 September 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003995, Natural Science Foundation of Anhui Province;
                Award ID: 1508085MH165
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Surgery
                chondrocytes,knee osteoarthritis,non-weight-bearing exercise,tlr4/myd88/nf-κb signaling pathway

                Comments

                Comment on this article