15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Competitive adsorption isotherms of Cu(II), Pb(II), and Cd(II) were examined on a magnetic graphene oxide (GO), multiwalled carbon nanotubes (MWCNTs), and powered activated carbon (PAC). A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II) > Cu(II) > Cd(II), which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection.

          Artificial enzyme mimetics are a current research interest because natural enzymes bear some serious disadvantages, such as their catalytic activity can be easily inhibited and they can be digested by proteases. A very recently study reported by Yan et al. has proven that Fe(3)O(4) magnetic nanoparticles (MNPs) exhibit an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, though MNPs are usually thought to be biological and chemical inert (Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S.; Yan, X. Y. Nat. Nanotechnol. 2007, 2, 577-583). In the present work, we just make use of the novel properties of Fe(3)O(4) MNPs as peroxidase mimetics reported by Yan et al. to detect H(2)O(2). The Fe(3)O(4) MNPs were prepared via a coprecipitation method. The as-prepared Fe(3)O(4) MNPs were then used to catalyze the oxidation of a peroxidase substrate 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) by H(2)O(2) to the oxidized colored product (see eq 1) which provides a colorimetric detection of H(2)O(2). As low as 3 x 10(-6) mol/L H(2)O(2) could be detected with a linear range from 5 x 10(-6) to 1 x 10(-4) mol/L via our method. More importantly, a sensitive and selective method for glucose detection was developed using glucose oxidase (GOx) and the as-prepared Fe(3)O(4) MNPs. The detection platforms for H(2)O(2) and glucose developed in the present work not only further confirmed that the Fe(3)O(4) MNPs possess intrinsic peroxidase-like activity but also showed great potential applications in varieties of simple, robust, and easy-to-make analytical approaches in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Size-dependent toxicity of metal oxide particles--a comparison between nano- and micrometer size.

            Toxicological studies have shown increased toxicity of nanoparticles (<100 nm) compared to micrometer particles of the same composition, which has raised concern about the impact on human health from nanoparticles. However, if this is true for a wide range of particles with different chemical composition is not clear. The aim of this study was to compare the toxicity of nano- and micrometer particles of some metal oxides (Fe(2)O(3), Fe(3)O(4), TiO(2) and CuO). The ability of the particles to cause cell death, mitochondrial damage, DNA damage and oxidative DNA lesions were evaluated after exposure of the human cell line A549. This study showed that nanoparticles of CuO were much more toxic compared to CuO micrometer particles. One key mechanism may be the ability of CuO to damage the mitochondria. In contrast, the micrometer particles of TiO(2) caused more DNA damage compared to the nanoparticles, which is likely explained by the crystal structures. The iron oxides showed low toxicity and no clear difference between the different particle sizes. In conclusion, nanoparticles are not always more toxic than micrometer particles, but the high toxicity of CuO nanoparticles shows that the nanolevel gives rise to specific concern.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite.

              In this study, we have demonstrated a facile one-step solvothermal method for the synthesis of the graphene nanosheet (GNS)/magnetite (Fe(3)O(4)) composite. During the solvothermal treatment, in situ conversion of FeCl(3) to Fe(3)O(4) and simultaneous reduction of graphene oxide (GO) into graphene in ethylene glycol solution were achieved. Electron microscopy study suggests the Fe(3)O(4) spheres with a size of about 200 nm are uniformly distributed and firmly anchored on the wrinkled graphene layers with a high density. The resulting GNS/Fe(3)O(4) composite shows extraordinary adsorption capacity and fast adsorption rates for removal of organic dye, methylene blue (MB), in water. The adsorption kinetics, isotherms and thermodynamics were investigated in detail to reveal that the kinetics and equilibrium adsorptions are well-described by pseudo-second-order kinetic and Langmuir isotherm model, respectively. The thermodynamic parameters reveal that the adsorption process is spontaneous and endothermic in nature. This study shows that the as-prepared GNS/Fe(3)O(4) composite could be utilized as an efficient, magnetically separable adsorbent for the environmental cleanup. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                Hindawi Publishing Corporation
                2356-6140
                1537-744X
                2015
                12 March 2015
                : 2015
                : 836287
                Affiliations
                1Department of Environment & Energy, Sejong University, Seoul 143-747, Republic of Korea
                2Department of Nano Science & Technology, Sejong University, Seoul 143-747, Republic of Korea
                Author notes

                Academic Editor: Guangliang Liu

                Article
                10.1155/2015/836287
                4377472
                190291ff-d663-4635-88cb-f6c5987b8d66
                Copyright © 2015 Jin Hur et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 November 2014
                : 14 January 2015
                : 20 January 2015
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article