5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Autonomous wearable sweat rate monitoring based on digitized microbubble detection

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A digitized microbubble detection mechanism delivered by a hybrid microfluidic/electronic system is devised for autonomous wearable high signal-to-noise ratio sweat rate monitoring.

          Abstract

          Advancements in wearable bioanalytical microsystems have enabled diurnal and (semi)continuous monitoring of physiologically-relevant indices that are accessible through probing sweat. To deliver an undistorted and physiologically-meaningful interpretation of these readings, tracking the sweat secretion rate is essential, because it allows for calibrating the biomarker readings against variations in sweat secretion and inferring the body's hydration/electrolyte homeostasis status. To realize an autonomous wearable solution with intrinsically high signal-to-noise ratio sweat rate sensing capabilities, here, we devise a digitized microbubble detection mechanism—delivered by a hybrid microfluidic/electronic system with a compact footprint. This mechanism is based on the intermittent generation of microliter-scale bubbles via electrolysis and the instantaneous measurement of their time-of-flight (and thus, velocity) via impedimetric sensing. In this way, we overcome the limitations of previously proposed sweat rate sensing modalities that are inherently susceptible to non-targeted secretion characteristics (pH, conductivity, and temperature), constrained by volume, or lack system integration for autonomous on-body operation. By deploying our solution in human subject trials, we validate the utility of our solution for seamless monitoring of exercise- and iontophoretically-induced sweat secretion profiles.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.

          Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Wearable sweat sensors

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wearable and flexible electronics for continuous molecular monitoring

              Wearable/flexible chemical sensors enable continuous molecular monitoring and provide an individual's dynamic health information at the molecular level. Wearable biosensors have received tremendous attention over the past decade owing to their great potential in predictive analytics and treatment toward personalized medicine. Flexible electronics could serve as an ideal platform for personalized wearable devices because of their unique properties such as light weight, low cost, high flexibility and great conformability. Unlike most reported flexible sensors that mainly track physical activities and vital signs, the new generation of wearable and flexible chemical sensors enables real-time, continuous and fast detection of accessible biomarkers from the human body, and allows for the collection of large-scale information about the individual's dynamic health status at the molecular level. In this article, we review and highlight recent advances in wearable and flexible sensors toward continuous and non-invasive molecular analysis in sweat, tears, saliva, interstitial fluid, blood, wound exudate as well as exhaled breath. The flexible platforms, sensing mechanisms, and device and system configurations employed for continuous monitoring are summarized. We also discuss the key challenges and opportunities of the wearable and flexible chemical sensors that lie ahead.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                LCAHAM
                Lab on a Chip
                Lab Chip
                Royal Society of Chemistry (RSC)
                1473-0197
                1473-0189
                November 08 2022
                2022
                : 22
                : 22
                : 4267-4275
                Affiliations
                [1 ]Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, UCLA, USA
                [2 ]Department of Mechanical Engineering, University of Hong Kong, Hong Kong
                [3 ]Department of Material Science and Engineering, UCLA, USA
                [4 ]Department of Computer Science, UCLA, USA
                [5 ]Stanford School of Medicine, Stanford University, USA
                Article
                10.1039/D2LC00670G
                17af6a27-007d-48be-b9bd-74b64b844515
                © 2022

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article