6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioengineering Human Tissues and the Future of Vascular Replacement

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiovascular defects, injuries, and degenerative diseases often require surgical intervention and the use of implantable replacement material and conduits. Traditional vascular grafts made of synthetic polymers, animal and cadaveric tissues, or autologous vasculature have been utilized for almost a century with well-characterized outcomes, leaving areas of unmet need for the patients in terms of durability and long-term patency, susceptibility to infection, immunogenicity associated with the risk of rejection, and inflammation and mechanical failure. Research to address these limitations is exploring avenues as diverse as gene therapy, cell therapy, cell reprogramming, and bioengineering of human tissue and replacement organs. Tissue-engineered vascular conduits, either with viable autologous cells or decellularized, are the forefront of technology in cardiovascular reconstruction and offer many benefits over traditional graft materials, particularly in the potential for the implanted material to be adopted and remodeled into host tissue and thus offer safer, more durable performance. This review discusses the key advances and future directions in the field of surgical vascular repair, replacement, and reconstruction, with a focus on the challenges and expected benefits of bioengineering human tissues and blood vessels.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of pluripotent stem cells from adult human fibroblasts by defined factors.

          Successful reprogramming of differentiated human somatic cells into a pluripotent state would allow creation of patient- and disease-specific stem cells. We previously reported generation of induced pluripotent stem (iPS) cells, capable of germline transmission, from mouse somatic cells by transduction of four defined transcription factors. Here, we demonstrate the generation of iPS cells from adult human dermal fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc. Human iPS cells were similar to human embryonic stem (ES) cells in morphology, proliferation, surface antigens, gene expression, epigenetic status of pluripotent cell-specific genes, and telomerase activity. Furthermore, these cells could differentiate into cell types of the three germ layers in vitro and in teratomas. These findings demonstrate that iPS cells can be generated from adult human fibroblasts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association

            Background: The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). Methods: The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year’s worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year’s edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. Results: Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. Conclusions: The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis.

              Lower extremity peripheral artery disease is the third leading cause of atherosclerotic cardiovascular morbidity, following coronary artery disease and stroke. This study provides the first comparison of the prevalence of peripheral artery disease between high-income countries (HIC) and low-income or middle-income countries (LMIC), establishes the primary risk factors for peripheral artery disease in these settings, and estimates the number of people living with peripheral artery disease regionally and globally. We did a systematic review of the literature on the prevalence of peripheral artery disease in which we searched for community-based studies since 1997 that defined peripheral artery disease as an ankle brachial index (ABI) lower than or equal to 0·90. We used epidemiological modelling to define age-specific and sex-specific prevalence rates in HIC and in LMIC and combined them with UN population numbers for 2000 and 2010 to estimate the global prevalence of peripheral artery disease. Within a subset of studies, we did meta-analyses of odds ratios (ORs) associated with 15 putative risk factors for peripheral artery disease to estimate their effect size in HIC and LMIC. We then used the risk factors to predict peripheral artery disease numbers in eight WHO regions (three HIC and five LMIC). 34 studies satisfied the inclusion criteria, 22 from HIC and 12 from LMIC, including 112,027 participants, of which 9347 had peripheral artery disease. Sex-specific prevalence rates increased with age and were broadly similar in HIC and LMIC and in men and women. The prevalence in HIC at age 45-49 years was 5·28% (95% CI 3·38-8·17%) in women and 5·41% (3·41-8·49%) in men, and at age 85-89 years, it was 18·38% (11·16-28·76%) in women and 18·83% (12·03-28·25%) in men. Prevalence in men was lower in LMIC than in HIC (2·89% [2·04-4·07%] at 45-49 years and 14·94% [9·58-22·56%] at 85-89 years). In LMIC, rates were higher in women than in men, especially at younger ages (6·31% [4·86-8·15%] of women aged 45-49 years). Smoking was an important risk factor in both HIC and LMIC, with meta-OR for current smoking of 2·72 (95% CI 2·39-3·09) in HIC and 1·42 (1·25-1·62) in LMIC, followed by diabetes (1·88 [1·66-2·14] vs 1·47 [1·29-1·68]), hypertension (1·55 [1·42-1·71] vs 1·36 [1·24-1·50]), and hypercholesterolaemia (1·19 [1·07-1·33] vs 1·14 [1·03-1·25]). Globally, 202 million people were living with peripheral artery disease in 2010, 69·7% of them in LMIC, including 54·8 million in southeast Asia and 45·9 million in the western Pacific Region. During the preceding decade the number of individuals with peripheral artery disease increased by 28·7% in LMIC and 13·1% in HIC. In the 21st century, peripheral artery disease has become a global problem. Governments, non-governmental organisations, and the private sector in LMIC need to address the social and economic consequences, and assess the best strategies for optimum treatment and prevention of this disease. Peripheral Arterial Disease Research Coalition (Europe). Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Circ Res
                Circ Res
                RES
                Circulation Research
                Lippincott Williams & Wilkins (Hagerstown, MD )
                0009-7330
                1524-4571
                24 June 2022
                24 June 2022
                : 131
                : 1
                : 109-126
                Affiliations
                [1 ]Humacyte, Inc, Durham, NC (K.M.N., M.H.K., Y.L., J.W., E.A.H., L.E.N.).
                [2 ]Department of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT (L.E.N.).
                Author notes
                Correspondence to: Laura E. Niklason, MD, PhD, Yale University, PO Box 208089, 10 Amistad St, Room 301D, New Haven, CT 06520. Email laura.niklason@ 123456yale.edu
                Author information
                https://orcid.org/0000-0002-7551-4108
                https://orcid.org/0000-0002-3748-4593
                https://orcid.org/0000-0002-3770-7646
                Article
                00013
                10.1161/CIRCRESAHA.121.319984
                9213087
                35737757
                12f33936-164b-46c2-af15-c9e2ac0f7c23
                © 2022 The Authors.

                Circulation Research is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

                History
                Categories
                10155
                10195
                Review
                Custom metadata
                TRUE

                bioengineering,cell- and tissue-based therapy,humans,regenerative medicine,tissue engineering

                Comments

                Comment on this article