37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans.

      Nature genetics
      Alleles, Amino Acid Sequence, Animals, Apoptosis, Base Sequence, Brain, abnormalities, pathology, Bromodeoxyuridine, pharmacology, Cell Differentiation, Cell Division, Cell Movement, DNA, Complementary, metabolism, Epithelial Cells, Genetic Linkage, Genetic Vectors, Genitalia, Homeodomain Proteins, genetics, physiology, Humans, Immunohistochemistry, Male, Mice, Mice, Knockout, Microscopy, Fluorescence, Models, Genetic, Molecular Sequence Data, Mutation, Neurons, Phenotype, Prosencephalon, Syndrome, Testis, Transcription Factors, Transfection, X Chromosome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Male embryonic mice with mutations in the X-linked aristaless-related homeobox gene (Arx) developed with small brains due to suppressed proliferation and regional deficiencies in the forebrain. These mice also showed aberrant migration and differentiation of interneurons containing gamma-aminobutyric acid (GABAergic interneurons) in the ganglionic eminence and neocortex as well as abnormal testicular differentiation. These characteristics recapitulate some of the clinical features of X-linked lissencephaly with abnormal genitalia (XLAG) in humans. We found multiple loss-of-function mutations in ARX in individuals affected with XLAG and in some female relatives, and conclude that mutation of ARX causes XLAG. The present report is, to our knowledge, the first to use phenotypic analysis of a knockout mouse to identify a gene associated with an X-linked human brain malformation.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          A protein related to extracellular matrix proteins deleted in the mouse mutant reeler.

          The autosomal recessive mouse mutation reeler leads to impaired motor coordination, tremors and ataxia. Neurons in affected mice fail to reach their correct locations in the developing brain, disrupting the organization of the cerebellar and cerebral cortices and other laminated regions. Here we use a previously characterized reeler allele (rl(tg)) to close a gene, reelin, deleted in two reeler alleles. Normal but not mutant mice express reelin in embryonic and postnatal neurons during periods of neuronal migration. The encoded protein resembles extracellular matrix proteins involved in cell adhesion. The reeler phenotype thus seems to reflect a failure of early events associated with brain lamination which are normally controlled by reelin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons.

            Recently, we and others reported that the doublecortin gene is responsible for X-linked lissencephaly and subcortical laminar heterotopia. Here, we show that Doublecortin is expressed in the brain throughout the period of corticogenesis in migrating and differentiating neurons. Immunohistochemical studies show its localization in the soma and leading processes of tangentially migrating neurons, and a strong axonal labeling is observed in differentiating neurons. In cultured neurons, Doublecortin expression is highest in the distal parts of developing processes. We demonstrate by sedimentation and microscopy studies that Doublecortin is associated with microtubules (MTs) and postulate that it is a novel MAP. Our data suggest that the cortical dysgeneses associated with the loss of Doublecortin function might result from abnormal cytoskeletal dynamics in neuronal cell development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes.

              Although previous analyses indicate that neocortical neurons originate from the cortical proliferative zone, evidence suggests that a subpopulation of neocortical interneurons originates within the subcortical telencephalon. For example, gamma-aminobutyric acid (GABA)-expressing cells migrate in vitro from the subcortical telencephalon into the neocortex. The number of GABA-expressing cells in neocortical slices is reduced by separating the neocortex from the subcortical telencephalon. Finally, mice lacking the homeodomain proteins DLX-1 and DLX-2 show no detectable cell migration from the subcortical telencephalon to the neocortex and also have few GABA-expressing cells in the neocortex.
                Bookmark

                Author and article information

                Comments

                Comment on this article