42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complete Genome Sequence of the Solvent Producer Clostridium saccharobutylicum NCP262 (DSM 13864)

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clostridium saccharobutylicum was employed for the production of acetone and butanol in South Africa until the 1970s. The genome comprises a single replicon (5,107,814 bp) harboring all the genes necessary for solvent production and the degradation of various organic compounds, such as fructose, cellobiose, sucrose, and mannose.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: not found
          • Article: not found

          The Staden package, 1998.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum.

            The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria. However, the C. acetobutylicum genome also contains a significant number of predicted operons that are shared with distantly related bacteria and archaea but not with B. subtilis. Phylogenetic analysis is compatible with the dissemination of such operons by horizontal transfer. The enzymes of the solventogenesis pathway and of the cellulosome of C. acetobutylicum comprise a new set of metabolic capacities not previously represented in the collection of complete genomes. These enzymes show a complex pattern of evolutionary affinities, emphasizing the role of lateral gene exchange in the evolution of the unique metabolic profile of the bacterium. Many of the sporulation genes identified in B. subtilis are missing in C. acetobutylicum, which suggests major differences in the sporulation process. Thus, comparative analysis reveals both significant conservation of the genome organization and pronounced differences in many systems that reflect unique adaptive strategies of the two gram-positive bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov.

              On the basis of 16S rRNA gene sequencing and DNA-DNA reassociation, industrial solvent-producing clostridia have been assigned to four species. In this study, the phenotypic characteristics of Clostridium acetobutylicum, Clostridium beijerinckii, 'Clostridium saccharoperbutylacetonicum', and an unnamed Clostridium sp. represented by the strains NCP 262T and NRRL B643 are compared. In addition, a further 40 strains of solvent-producing clostridia have been classified by biotyping, DNA fingerprinting and 16S rRNA gene sequencing. These included 14 C. beijerinckii strains, two strains currently designated as 'Clostridium kaneboi' and 'Clostridium butanologenum', and 24 production strains used in the commercial acetone-butanol fermentation. All of the C. beijerinckii strains were confirmed to have been classified correctly. The 'C. kaneboi' and 'C. butanologenum' strains require reclassification as C. acetobutylicum and C. beijerinckii, respectively. The commercial production strains were found to belong either to C. beijerinckii or to the unnamed Clostridium sp. For the comparative phenotypic studies of the four species, representative strains were selected from each of the DNA-fingerprint subgroups within each species. These strains were analysed for their ability to utilize different carbohydrates, hydrolyse gelatin or aesculin, and produce indole, and were tested for the presence of catalase and urease. On the basis of these results, several phenotypic traits were found to be useful for differentiating between the four species. The descriptions of C. acetobutylicum and C. beijerinckii have been emended. The names Clostridium saccharoperbutylacetonicum sp. nov. [type strain = N1-4 (HMT) = ATCC 27021T] and Clostridium saccharobutylicum sp. nov. (type strain = DSM 13864T = ATCC BAA-117T) are proposed for the two new species.
                Bookmark

                Author and article information

                Journal
                Genome Announc
                Genome Announc
                ga
                ga
                GA
                Genome Announcements
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2169-8287
                27 November 2013
                Nov-Dec 2013
                : 1
                : 6
                : e00997-13
                Affiliations
                Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University, Göttingen, Göttingen, Germany [a ]
                Green Biologics Ltd., Milton Park, Abingdon, Oxfordshire, United Kingdom [b ]
                Lehrstuhl für Mikrobiologie, Technische Universität München, Freising, Germany [c ]
                Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Ulm, Germany [d ]
                Author notes
                Address correspondence to Rolf Daniel, rdaniel@ 123456gwdg.de .
                Article
                genomeA00997-13
                10.1128/genomeA.00997-13
                3869335
                24285650
                0cdba2be-bc42-4f2d-9a2d-47d15bc68876
                Copyright © 2013 Poehlein et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

                History
                : 24 October 2013
                : 27 October 2013
                Page count
                Pages: 2
                Categories
                Prokaryotes
                Custom metadata
                November/December 2013
                free

                Genetics
                Genetics

                Comments

                Comment on this article