6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into Trace Metal Metabolism in Health and Disease from PET: “PET Metallomics”

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Essential trace metals such as copper, zinc, iron, and manganese perform critical functions in cellular and physiologic processes including catalytic, regulatory, and signaling roles. Disturbed metal homeostasis is associated with the pathogenesis of diseases such as dementia, cancer, and inherited metabolic abnormalities. Intracellular pathways involving essential metals have been extensively studied but whole-body fluxes and transport between different compartments remain poorly understood. The growing availability of PET scanners and positron-emitting isotopes of key essential metals, particularly 64Cu, 63Zn, and 52Mn, provide new tools with which to study these processes in vivo. This review highlights opportunities that now present themselves, exemplified by studies of copper metabolism that are in the vanguard of a new research front in molecular imaging: “PET metallomics.”

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Elevated copper and oxidative stress in cancer cells as a target for cancer treatment.

          As we gain a better understanding of the factors affecting cancer etiology, we can design improved treatment strategies. Over the past three to four decades, there have been numerous successful efforts in recognizing important cellular proteins essential in cancer growth and therefore these proteins have been targeted for cancer treatment. However, studies have shown that targeting one or two proteins in the complex cancer cascade may not be sufficient in controlling and/or inhibiting cancer growth. Therefore, there is a need to examine features which are potentially involved in multiple facets of cancer development. In this review we discuss the targeting of the elevated copper (both in serum and tumor) and oxidative stress levels in cancer with the aid of a copper chelator d-penicillamine (d-pen) for potential cancer treatment. Numerous studies in the literature have reported that both the serum and tumor copper levels are elevated in a variety of malignancies, including both solid tumor and blood cancer. Further, the elevated copper levels have been shown to be directly correlated to cancer progression. Enhanced levels of intrinsic oxidative stress has been shown in variety of tumors, possibly due to the combination of factors such as elevated active metabolism, mitochondrial mutation, cytokines, and inflammation. The cancer cells under sustained ROS stress tend to heavily utilize adaptation mechanisms and may exhaust cellular ROS-buffering capacity. Therefore, the elevated copper levels and increased oxidative stress in cancer cells provide for a prospect of selective cancer treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting copper in cancer therapy: 'Copper That Cancer'.

            Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wilson's disease.

              Progressive hepatolenticular degeneration, or Wilson's disease, is a genetic disorder of copper metabolism. Knowledge of the clinical presentations and treatment of the disease are important both to the generalist and to specialists in gastroenterology and hepatology, neurology, psychiatry, and paediatrics. Wilson's disease invariably results in severe disability and death if untreated. The diagnosis is easily overlooked but if discovered early, effective treatments are available that will prevent or reverse many manifestations of this disorder. Studies have identified the role of copper in disease pathogenesis and clinical, biochemical, and genetic markers that can be useful in diagnosis. There are several chelating agents and zinc salts for medical therapy. Liver transplantation corrects the underlying pathophysiology and can be lifesaving. The discovery of the Wilson's disease gene has opened up a new molecular diagnostic approach, and could form the basis of future gene therapy.
                Bookmark

                Author and article information

                Journal
                J Nucl Med
                J. Nucl. Med
                jnumed
                jnm
                Journal of Nuclear Medicine
                Society of Nuclear Medicine
                0161-5505
                1535-5667
                September 2018
                : 59
                : 9
                : 1355-1359
                Affiliations
                King’s College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, London, United Kingdom
                Author notes
                For correspondence or reprints contact: Philip J. Blower, King’s College London, School of Biomedical Engineering and Imaging Sciences, 4 th Floor Lambeth Wing, St. Thomas’ Hospital, London SE1 7EH, U.K. E-mail: philip.blower@ 123456kcl.ac.uk

                Published online Jul. 5, 2018.

                Article
                212803
                10.2967/jnumed.118.212803
                6126445
                29976696
                0b43d2c5-a2dd-481d-b7b8-3bacb718d990
                © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

                Immediate Open Access: Creative Commons Attribution 4.0 International License (CC BY) allows users to share and adapt with attribution, excluding materials credited to previous publications. License: https://creativecommons.org/licenses/by/4.0/. Details: http://jnm.snmjournals.org/site/misc/permission.xhtml.

                History
                : 11 April 2018
                : 11 June 2018
                Page count
                Pages: 5
                Categories
                Focus on Molecular Imaging

                copper trafficking,positron emission tomography,64cu,metallomics

                Comments

                Comment on this article