1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Understanding, discovery, and synthesis of 2D materials enabled by machine learning

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Machine learning (ML) is becoming an effective tool for studying 2D materials.

          Abstract

          Machine learning (ML) is becoming an effective tool for studying 2D materials. Taking as input computed or experimental materials data, ML algorithms predict the structural, electronic, mechanical, and chemical properties of 2D materials that have yet to be discovered. Such predictions expand investigations on how to synthesize 2D materials and use them in various applications, as well as greatly reduce the time and cost to discover and understand 2D materials. This tutorial review focuses on the understanding, discovery, and synthesis of 2D materials enabled by or benefiting from various ML techniques. We introduce the most recent efforts to adopt ML in various fields of study regarding 2D materials and provide an outlook for future research opportunities. The adoption of ML is anticipated to accelerate and transform the study of 2D materials and their heterostructures.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Double-slit photoelectron interference in strong-field ionization of the neon dimer

          Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            2D metal carbides and nitrides (MXenes) for energy storage

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measurement of the elastic properties and intrinsic strength of monolayer graphene.

              We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
                Bookmark

                Author and article information

                Contributors
                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                March 21 2022
                2022
                : 51
                : 6
                : 1899-1925
                Affiliations
                [1 ]Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA
                [2 ]Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
                [3 ]The Materials Research Center, Northwestern University, Evanston, Illinois 60208, USA
                [4 ]Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
                [5 ]Northwestern Argonne Institute of Science and Engineering, Evanston, Illinois 60208, USA
                Article
                10.1039/D1CS00503K
                35246673
                0a2266b3-ead4-4bd9-8fff-ad7eaad5a01e
                © 2022

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article