Crackling noise arises when a system responds to changing external conditions through discrete, impulsive events spanning a broad range of sizes. A wide variety of physical systems exhibiting crackling noise have been studied, from earthquakes on faults to paper crumpling. Because these systems exhibit regular behavior over many decades of sizes, their behavior is likely independent of microscopic and macroscopic details, and progress can be made by the use of very simple models. The fact that simple models and real systems can share the same behavior on a wide range of scales is called universality. We illustrate these ideas using results for our model of crackling noise in magnets, explaining the use of the renormalization group and scaling collapses. This field is still developing: we describe a number of continuing challenges.