43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extensin and Arabinogalactan-Protein Biosynthesis: Glycosyltransferases, Research Challenges, and Biosensors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent research, mostly in Arabidopsis thaliana, has led to the identification and characterization of the glycosyltransferases responsible for the biosynthesis of two of the most functionally important and abundant families of plant cell wall proteins, extensins, and arabinogalactan-proteins. Extensin glycosylation involves monogalactosylation of serine residues by O-α-serine galactosyltransferase and the addition of oligoarabinosides one to five arabinose units in length to contiguous hydroxyproline residues by a set of specific arabinosyltransferase enzymes, which includes hydroxyproline O-β-arabinosyltransferases, β-1,2-arabinosyltransferases, and at least one α-1,3-arabinosyltransferase. AGP glycosylation, however, is much more complex and involves the addition of large arabinogalactan polysaccharide chains to non-contiguous hydroxyproline residues. These arabinogalactan chains are composed of β-1,3-galactan backbones decorated with β-1,6-galactose side chains that are further modified with α-arabinose as well as other sugars, including β-(methyl)glucuronic acid, α-rhamnose, and α-fucose. Specific sets of hydroxyproline O-β-galactosyltransferases, β-1,3-galactosyltransferases, β-1,6-galactosyltransferases, α-arabinosyltransferases, β-glucuronosyltransferases, α-rhamnosyltransferases, and α-fucosyltransferases are responsible for the synthesis of these complex structures. This mini-review summarizes the EXT and AGP glycosyltransferases identified and characterized to date along with corresponding genetic mutant data, which addresses the functional importance of EXT and AGP glycosylation. In one case, genetic mutant data indicate that the carbohydrate moiety of arabinogalactan-proteins may serve as an extracellular biosensor or signal for normal cellular growth. Finally, future research challenges with respect to understanding the function of these enzymes more completely and discovering and characterizing additional glycosyltransferases responsible for extensin and arabinogalactan-protein biosynthesis are also discussed.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein.

          Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Structure and function of plant cell wall proteins.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arabinogalactan-proteins: structure, expression and function.

              Arabinogalactan-proteins (AGPs) are a family of extensively glycosylated hydroxyproline-rich glycoproteins that are thought to have important roles in various aspects of plant growth and development. After a brief introduction to AGPs highlighting the problems associated with defining and classifying this diverse family of glycoproteins, AGP structure is described in terms of the protein component (including data from molecular cloning), carbohydrate component, processing of AGPs (including recent data on glycosylphosphatidylinositol membrane anchors) and overall molecular shape. Next, the expression of AGPs is examined at several different levels, from the whole plant to the cellular levels, using a variety of experimental techniques and tools. Finally, AGP function is considered. Although the existing functional evidence is not incontrovertible, it does clearly point to roles for AGPs in vegetative, reproductive, and cellular growth and development as well as programmed cell death and social control. In addition and most likely inextricably linked to their functions, AGPs are presumably involved in molecular interactions and cellular signaling at the cell surface. Some likely scenarios are discussed in this context. AGPs also have functions of real or potential commercial value, most notably as emulsifiers in the food industry and as potential immunological regulators for human health. Several important questions remain to be answered with respect to AGPs. Clearly, elucidating the unequivocal functions of particular AGPs and relating these functions to their respective structures and modes of action remain as major challenges in the years ahead.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                15 June 2016
                2016
                : 7
                : 814
                Affiliations
                Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University Athens, OH, USA
                Author notes

                Edited by: Huanzhong Wang, University of Connecticut, USA

                Reviewed by: Yumiko Sakuragi, University of Copenhagen, Denmark; Taras P. Pasternak, University of Freiburg, Germany

                *Correspondence: Allan M. Showalter, showalte@ 123456ohio.edu

                This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2016.00814
                4908140
                27379116
                06936447-d763-4121-b201-79313b81b49e
                Copyright © 2016 Showalter and Basu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 March 2016
                : 25 May 2016
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 44, Pages: 9, Words: 0
                Funding
                Funded by: National Science Foundation 10.13039/100000001
                Award ID: 0918661
                Funded by: U.S. Department of Agriculture 10.13039/100000199
                Award ID: 2008-35318-04563
                Award ID: 2008-35318-04572
                Categories
                Plant Science
                Mini Review

                Plant science & Botany
                biosynthesis,cell wall,extensin,arabinogalactan-protein,hydroxyproline,hydroxyproline-rich glycoproteins,glycosyltransferases,signaling

                Comments

                Comment on this article