15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimising pyrolysis conditions for high-quality biochar production using black soldier fly larvae faecal-derived residue as feedstock

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The disposal of feacal matter from Urine Diversion Dry Toilets is a significant challenge due to limited land availability, possible underground water contamination, and the risk of spreading diseases. The collected faecal matter can be fed to Black Soldier Fly Larvae to produce protein-rich larvae used as animal feed. The disposal of the leftover waste (BSFL residue) is still a problem due to the risk of residual pathogen contamination. The BSFL residue contains residual plant nutrients and can be further processed into biochar. Faecal matter biochar offers an exciting value proposition where the pyrolysis process guarantees a 100% pathogen elimination. It also results in significant waste reduction in transport, storage weight, and volume. A preliminary study was conducted to (i) optimise pyrolysis conditions (optimal temperature treatment and residence time) for biochar production using residue obtained after faecal matter from urine diversion dry toilets was fed to black soldier fly larvae as feedstock; and (ii) determine the physicochemical and morphological characteristics of biochar produced. The residue was pyrolysed at 300, 400, and 500 °C and characterised for chemical, biological and physical characteristics. Surface area (6.61 m 2 g −1), pore size, and C: N (9.28) ratio increased at 500 °C for 30 min. Exchangeable bases, (Calcium) Ca, (Magnesium) Mg, (Potassium) K, and (Sodium) Na increased with increasing pyrolysis temperature. The increase in basic cations resulted in an increase in pH from 6.7 in the residue to 9.8 in biochar pyrolysed at 500 °C. Biochar pyrolysed at 500 °C can therefore be used to improve acidic soils. Phosphorus increased with increasing pyrolysis temperature to 3 148 mg kg −1 at 500 °C. Biochar produced at 500 °C for 30 min had desirable characteristics: surface area, exchangeable bases, and pH. Also, biochar can be used as a phosphorus source with potential for crop production, although an external nitrogen source is needed to meet crop nutrient requirements.

          Abstract

          Biochar; Black soldier fly larvae, Faecal matter, Phosphorus recovery; Pyrolysis; Waste management.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects

            Biochar is a pyrogenous, organic material synthesized through pyrolysis of different biomass (plant or animal waste). The potential biochar applications include: (1) pollution remediation due to high CEC and specific surface area; (2) soil fertility improvement on the way of liming effect, enrichment in volatile matter and increase of pore volume, (3) carbon sequestration due to carbon and ash content, etc. Biochar properties are affected by several technological parameters, mainly pyrolysis temperature and feedstock kind, which differentiation can lead to products with a wide range of values of pH, specific surface area, pore volume, CEC, volatile matter, ash and carbon content. High pyrolysis temperature promotes the production of biochar with a strongly developed specific surface area, high porosity, pH as well as content of ash and carbon, but with low values of CEC and content of volatile matter. This is most likely due to significant degree of organic matter decomposition. Biochars produced from animal litter and solid waste feedstocks exhibit lower surface areas, carbon content, volatile matter and high CEC compared to biochars produced from crop residue and wood biomass, even at higher pyrolysis temperatures. The reason for this difference is considerable variation in lignin and cellulose content as well as in moisture content of biomass. The physicochemical properties of biochar determine application of this biomaterial as an additive to improve soil quality. This review succinctly presents the impact of pyrolysis temperature and the type of biomass on the physicochemical characteristics of biochar and its impact on soil fertility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The forms of alkalis in the biochar produced from crop residues at different temperatures.

              The forms of alkalis of the biochars produced from the straws of canola, corn, soybean and peanut at different temperatures (300, 500 and 700°C) were studied by means of oxygen-limited pyrolysis. The alkalinity and pH of the biochars increased with increased pyrolysis temperature. The X-ray diffraction spectra and the content of carbonates of the biochars suggested that carbonates were the major alkaline components in the biochars generated at the high temperature; they were also responsible for the strong buffer plateau-regions on the acid-base titration curves at 500 and 700°C. The data of FTIR-PAS and zeta potentials indicated that the functional groups such as -COO(-) (-COOH) and -O(-) (-OH) contained by the biochars contributed greatly to the alkalinity of the biochar samples tested, especially for those generated at the lower temperature. These functional groups were also responsible for the negative charges of the biochars. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                21 May 2021
                May 2021
                21 May 2021
                : 7
                : 5
                : e07025
                Affiliations
                [a ]Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, Rabie Saunders Building, Campus, P Bag X01, Scottsville, Pietermaritzburg, 3201, South Africa
                [b ]Agriprotein Technologies, 1 Rochester Rd, Philippi, Cape Town, 7750, South Africa
                Author notes
                []Corresponding author. nqobsnkomo@ 123456gmail.com
                Article
                S2405-8440(21)01128-2 e07025
                10.1016/j.heliyon.2021.e07025
                8165418
                05de0f84-faba-464e-8c07-403b00b56be4
                © 2021 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 7 February 2021
                : 2 April 2021
                : 5 May 2021
                Categories
                Research Article

                biochar,black soldier fly larvae,faecal matter,phosphorus recovery,pyrolysis,waste management

                Comments

                Comment on this article