2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Preclinical and Clinical Progress in Liposomal Doxorubicin

      ,
      Pharmaceutics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Doxorubicin (DOX) is a potent anti-cancer agent that has garnered great interest in research due to its high efficacy despite dose-limiting toxicities. Several strategies have been exploited to enhance the efficacy and safety profile of DOX. Liposomes are the most established approach. Despite the improvement in safety properties of liposomal encapsulated DOX (in Doxil and Myocet), the efficacy is not superior to conventional DOX. Functionalized (targeted) liposomes present a more effective system to deliver DOX to the tumor. Moreover, encapsulation of DOX in pH-sensitive liposomes (PSLs) or thermo-sensitive liposomes (TSLs) combined with local heating has improved DOX accumulation in the tumor. Lyso-thermosensitive liposomal DOX (LTLD), MM-302, and C225-immunoliposomal(IL)-DOX have reached clinical trials. Further functionalized PEGylated liposomal DOX (PLD), TSLs, and PSLs have been developed and evaluated in preclinical models. Most of these formulations improved the anti-tumor activity compared to the currently available liposomal DOX. However, the fast clearance, the optimization of ligand density, stability, and release rate need more investigations. Therefore, we reviewed the latest approaches applied to deliver DOX more efficiently to the tumor, preserving the benefits obtained from FDA-approved liposomes.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          Cell-Penetrating Peptides: From Basic Research to Clinics.

          The presence of cell and tissue barriers together with the low biomembrane permeability of various therapeutics often hampers systemic drug distribution; thus, most of the available molecules are of limited therapeutic value. Opportunities to increase medicament concentrations in areas that are difficult to access now exist with the advent of cell-penetrating peptides (CPPs), which can transport into the cell a wide variety of biologically active conjugates (cargoes). Numerous preclinical evaluations with CPP-derived therapeutics have provided promising results in various disease models that, in some cases, prompted clinical trials. The outcome of these investigations has thus opened new perspectives for CPP application in the development of unprecedented human therapies that are well tolerated and directed to intracellular targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems.

            The frontline drug doxorubicin has been used for treating cancer for over 30 years. While providing a cure in select cases, doxorubicin causes toxicity to most major organs, especially life-threatening cardiotoxicity, which forces the treatment to become dose-limiting. Doxorubicin is known to bind to DNA-associated enzymes, intercalate with DNA base pairs, and target multiple molecular targets to produce a range of cytotoxic effects. For instance, it causes the activation of various molecular signals from AMPK (AMP-activated protein kinase inducing apoptosis) to influence the Bcl-2/Bax apoptosis pathway. By altering the Bcl-2/Bax ratio, downstream activation of different caspases can occur resulting in apoptosis. Doxorubicin also induces apoptosis and necrosis in healthy tissue causing toxicity in the brain, liver, kidney and heart. Over the years, many studies have been conducted to devise a drug delivery system that would eliminate these adverse affects including liposomes, hydrogel and nanoparticulate systems, and we highlight the pros and cons of these drug delivery systems. Overall the future for the continued use of doxorubicin clinically against cancer looks set to be prolonged, provided certain enhancements as listed above are made to its chemistry, delivery and toxicity. Increased efficacy depends on these three aims being met satisfactorily as discussed in turn in this review. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Doxorubicin Cardiomyopathy

              Established doxorubicin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50%. Extensive research has been done to understand the mechanism and pathophysiology of doxorubicin cardiomyopathy, and considerable knowledge and experience has been gained. Unfortunately, no effective treatment for established doxorubicin cardiomyopathy is presently available. Extensive research has been done and is being done to discover preventive treatments. However an effective and clinically applicable preventive treatment is yet to be discovered.
                Bookmark

                Author and article information

                Contributors
                Journal
                PHARK5
                Pharmaceutics
                Pharmaceutics
                MDPI AG
                1999-4923
                March 2023
                March 09 2023
                : 15
                : 3
                : 893
                Article
                10.3390/pharmaceutics15030893
                10054554
                36986754
                04fe2afc-a475-4609-af0a-ba1f24c56460
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article