1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circulating metabolites as potential biomarkers for the early detection and prognosis surveillance of gastrointestinal cancers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and aims

          Two of the most lethal gastrointestinal (GI) cancers, gastric cancer (GC) and colon cancer (CC), are ranked in the top five cancers that cause deaths worldwide. Most GI cancer deaths can be reduced by earlier detection and more appropriate medical treatment. Unlike the current “gold standard” techniques, non-invasive and highly sensitive screening tests are required for GI cancer diagnosis. Here, we explored the potential of metabolomics for GI cancer detection and the classification of tissue-of-origin, and even the prognosis management.

          Methods

          Plasma samples from 37 gastric cancer (GC), 17 colon cancer (CC), and 27 non-cancer (NC) patients were prepared for metabolomics and lipidomics analysis by three MS-based platforms. Univariate, multivariate, and clustering analyses were used for selecting significant metabolic features. ROC curve analysis was based on a series of different binary classifications as well as the true-positive rate (sensitivity) and the false-positive rate (1-specificity).

          Results

          GI cancers exhibited obvious metabolic perturbation compared with benign diseases. The differentiated metabolites of gastric cancer (GC) and colon cancer (CC) were targeted to same pathways but with different degrees of cellular metabolism reprogramming. The cancer-specific metabolites distinguished the malignant and benign, and classified the cancer types. We also applied this test to before- and after-surgery samples, wherein surgical resection significantly altered the blood-metabolic patterns. There were 15 metabolites significantly altered in GC and CC patients who underwent surgical treatment, and partly returned to normal conditions.

          Conclusion

          Blood-based metabolomics analysis is an efficient strategy for GI cancer screening, especially for malignant and benign diagnoses. The cancer-specific metabolic patterns process the potential for classifying tissue-of-origin in multi-cancer screening. Besides, the circulating metabolites for prognosis management of GI cancer is a promising area of research.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s11306-023-02002-0.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Hallmarks of Cancer: New Dimensions

          The hallmarks of cancer conceptualization is a heuristic tool for distilling the vast complexity of cancer phenotypes and genotypes into a provisional set of underlying principles. As knowledge of cancer mechanisms has progressed, other facets of the disease have emerged as potential refinements. Herein, the prospect is raised that phenotypic plasticity and disrupted differentiation is a discrete hallmark capability, and that nonmutational epigenetic reprogramming and polymorphic microbiomes both constitute distinctive enabling characteristics that facilitate the acquisition of hallmark capabilities. Additionally, senescent cells, of varying origins, may be added to the roster of functionally important cell types in the tumor microenvironment. SIGNIFICANCE: Cancer is daunting in the breadth and scope of its diversity, spanning genetics, cell and tissue biology, pathology, and response to therapy. Ever more powerful experimental and computational tools and technologies are providing an avalanche of "big data" about the myriad manifestations of the diseases that cancer encompasses. The integrative concept embodied in the hallmarks of cancer is helping to distill this complexity into an increasingly logical science, and the provisional new dimensions presented in this perspective may add value to that endeavor, to more fully understand mechanisms of cancer development and malignant progression, and apply that knowledge to cancer medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Emerging Hallmarks of Cancer Metabolism.

            Tumorigenesis is dependent on the reprogramming of cellular metabolism as both direct and indirect consequence of oncogenic mutations. A common feature of cancer cell metabolism is the ability to acquire necessary nutrients from a frequently nutrient-poor environment and utilize these nutrients to both maintain viability and build new biomass. The alterations in intracellular and extracellular metabolites that can accompany cancer-associated metabolic reprogramming have profound effects on gene expression, cellular differentiation, and the tumor microenvironment. In this Perspective, we have organized known cancer-associated metabolic changes into six hallmarks: (1) deregulated uptake of glucose and amino acids, (2) use of opportunistic modes of nutrient acquisition, (3) use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, (4) increased demand for nitrogen, (5) alterations in metabolite-driven gene regulation, and (6) metabolic interactions with the microenvironment. While few tumors display all six hallmarks, most display several. The specific hallmarks exhibited by an individual tumor may ultimately contribute to better tumor classification and aid in directing treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer genome landscapes.

              Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of "mountains" (genes altered in a high percentage of tumors) and a much larger number of "hills" (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or "drive" tumorigenesis. A typical tumor contains two to eight of these "driver gene" mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality.
                Bookmark

                Author and article information

                Contributors
                venussoon1982@163.com
                a7882285@163.com
                junlong.tang@metanotitia.com
                haohui.li@metanotitia.com
                shuyu.pang@metanotitia.com
                yan.li@metanotitia.com
                li.liu@metanotitia.com
                junyuan.hu@metanotitia.com
                Journal
                Metabolomics
                Metabolomics
                Metabolomics
                Springer US (New York )
                1573-3882
                1573-3890
                4 April 2023
                4 April 2023
                2023
                : 19
                : 4
                : 36
                Affiliations
                [1 ]GRID grid.412648.d, ISNI 0000 0004 1798 6160, The Second Hospital of Tianjin Medical University, ; No 23. Pingjiang Road, Hexi District, 300211 Tianjin China
                [2 ]Metanotitia Inc, No 59. Gaoxin South 9Th Road, Yuehai Street, Nanshan District, Shenzhen, 518056 Guangdong China
                Article
                2002
                10.1007/s11306-023-02002-0
                10073066
                37014438
                02b532d7-4475-4f3c-8a8a-a4d878a31ad3
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 November 2022
                : 22 March 2023
                Categories
                Original Article
                Custom metadata
                © Springer Science+Business Media, LLC, part of Springer Nature 2023

                Molecular biology
                metabolomics,circulating metabolites,gastric cancer,colon cancer,early detection,biomarker,surveillance

                Comments

                Comment on this article