Although nanoparticles have been traditionally modified with a single ligand layer, mixture of ligands might help to combine different functionalities and to further engineer the NP surface. A detailed study of the competition between an alkanethiol (11-mercaptoundecanoic acid) and SH-PEG for the surface of AuNPs and the resultant behaviors of this model nanoconjugate is presented here. As a result, the physicochemical properties of these conjugates can be progressively tuned by controlling the composition and especially the conformation of the mixed monolayer. This has implications in the physiological stability. The controlled changes on the SH-PEG conformation rather than its concentration induces a change in the stabilization mechanism from electrostatic repulsion to steric hindrance, which changes the biological fate of NPs. Importantly, the adsorption of proteins on the conjugates can be tailored by tuning the composition and conformation of the mixed layer.