82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species.

          Results

          Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought.

          Conclusions

          In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.

          Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.

            Full-length cDNAs are essential for functional analysis of plant genes in the post-sequencing era of the Arabidopsis genome. Recently, cDNA microarray analysis has been developed for quantitative analysis of global and simultaneous analysis of expression profiles. We have prepared a full-length cDNA microarray containing approximately 7000 independent, full-length cDNA groups to analyse the expression profiles of genes under drought, cold (low temperature) and high-salinity stress conditions over time. The transcripts of 53, 277 and 194 genes increased after cold, drought and high-salinity treatments, respectively, more than fivefold compared with the control genes. We also identified many highly drought-, cold- or high-salinity- stress-inducible genes. However, we observed strong relationships in the expression of these stress-responsive genes based on Venn diagram analysis, and found 22 stress-inducible genes that responded to all three stresses. Several gene groups showing different expression profiles were identified by analysis of their expression patterns during stress-responsive gene induction. The cold-inducible genes were classified into at least two gene groups from their expression profiles. DREB1A was included in a group whose expression peaked at 2 h after cold treatment. Among the drought, cold or high-salinity stress-inducible genes identified, we found 40 transcription factor genes (corresponding to approximately 11% of all stress-inducible genes identified), suggesting that various transcriptional regulatory mechanisms function in the drought, cold or high-salinity stress signal transduction pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Arabidopsis Information Resource (TAIR): gene structure and function annotation

              The Arabidopsis Information Resource (TAIR, http://arabidopsis.org) is the model organism database for the fully sequenced and intensively studied model plant Arabidopsis thaliana. Data in TAIR is derived in large part from manual curation of the Arabidopsis research literature and direct submissions from the research community. New developments at TAIR include the addition of the GBrowse genome viewer to the TAIR site, a redesigned home page, navigation structure and portal pages to make the site more intuitive and easier to use, the launch of several TAIR web services and a new genome annotation release (TAIR7) in April 2007. A combination of manual and computational methods were used to generate this release, which contains 27 029 protein-coding genes, 3889 pseudogenes or transposable elements and 1123 ncRNAs (32 041 genes in all, 37 019 gene models). A total of 681 new genes and 1002 new splice variants were added. Overall, 10 098 loci (one-third of all loci from the previous TAIR6 release) were updated for the TAIR7 release.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2010
                12 November 2010
                : 11
                : 630
                Affiliations
                [1 ]INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France
                [2 ]INRA, Nancy Université, UMR1136 Interactions Arbres Micro-Organismes, IFR 110 EFABA, F-54280 Champenoux, France
                [3 ]Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165-Université d'Evry Val d'Essonne-ERL CNRS 8196, 2 rue G. Crémieux, CP 5708, F-91057 Evry Cedex, France
                [4 ]UMR 518 AgroParisTech/INRA MIA, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
                [5 ]Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM UMR-S 665, Université Paris Diderot-Paris 7, INTS, 6 rue Alexandre Cabanel 75015 Paris, France
                Article
                1471-2164-11-630
                10.1186/1471-2164-11-630
                3091765
                21073700
                dc0adb94-a938-4357-b102-c6fede18fcd4
                Copyright ©2010 Cohen et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 June 2010
                : 12 November 2010
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article