1,432
views
1
recommends
+1 Recommend
0 collections
    32
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          This review which is the second in this series summarises the most common synthetic routes as applied to the preparation of many modern pharmaceutical compounds categorised as containing a six-membered heterocyclic ring. The reported examples are based on the top retailing drug molecules combining synthetic information from both scientific journals and the wider patent literature. It is hoped that this compilation, in combination with the previously published review on five-membered rings, will form a comprehensive foundation and reference source for individuals interested in medicinal, synthetic and preparative chemistry.

          Abstract

          Related collections

          Most cited references166

          • Record: found
          • Abstract: found
          • Article: not found

          hERG potassium channels and cardiac arrhythmia.

          hERG potassium channels are essential for normal electrical activity in the heart. Inherited mutations in the HERG gene cause long QT syndrome, a disorder that predisposes individuals to life-threatening arrhythmias. Arrhythmia can also be induced by a blockage of hERG channels by a surprisingly diverse group of drugs. This side effect is a common reason for drug failure in preclinical safety trials. Insights gained from the crystal structures of other potassium channels have helped our understanding of the block of hERG channels and the mechanisms of gating.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural mechanism for statin inhibition of HMG-CoA reductase.

            HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase (HMGR) catalyzes the committed step in cholesterol biosynthesis. Statins are HMGR inhibitors with inhibition constant values in the nanomolar range that effectively lower serum cholesterol levels and are widely prescribed in the treatment of hypercholesterolemia. We have determined structures of the catalytic portion of human HMGR complexed with six different statins. The statins occupy a portion of the binding site of HMG-CoA, thus blocking access of this substrate to the active site. Near the carboxyl terminus of HMGR, several catalytically relevant residues are disordered in the enzyme-statin complexes. If these residues were not flexible, they would sterically hinder statin binding.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome.

              The dipeptide boronic acid bortezomib, also termed VELCADE, is a proteasome inhibitor now in use for the treatment of multiple myeloma, and its use for the treatment of other malignancies is being explored. We determined the crystal structure of the yeast 20S proteasome in complex with bortezomib to establish the specificity and binding mode of bortezomib to the proteasome's different catalytically active sites. This structure should enable the rational design of new boronic acid derivatives with improved affinities and specificities for individual active subunits.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Beilstein J Org Chem
                Beilstein J Org Chem
                Beilstein Journal of Organic Chemistry
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                1860-5397
                2013
                30 October 2013
                : 9
                : 2265-2319
                Affiliations
                [1 ]Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK
                Article
                10.3762/bjoc.9.265
                3817479
                d2330901-d716-44ac-b905-dc277de61141
                Copyright © 2013, Baumann and Baxendale; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: ( http://www.beilstein-journals.org/bjoc)

                History
                : 12 July 2013
                : 9 October 2013
                Categories
                Review
                Chemistry
                Organic Chemistry

                Organic & Biomolecular chemistry
                heterocycles,medicinal chemistry,pharmaceuticals,six-membered rings,synthesis

                Comments

                Comment on this article

                scite_
                761
                1
                371
                0
                Smart Citations
                761
                1
                371
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1

                Cited by118

                Most referenced authors1,635