55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Highlights on distinctive structural and functional properties of HTLV Tax proteins

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human T cell leukemia viruses (HTLVs) are complex human retroviruses of the Deltaretrovirus genus. Four types have been identified thus far, with HTLV-1 and HTLV-2 much more prevalent than HTLV-3 or HTLV-4. HTLV-1 and HTLV-2 possess strictly related genomic structures, but differ significantly in pathogenicity, as HTLV-1 is the causative agent of adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis, whereas HTLV-2 is not associated with neoplasia. HTLVs code for a protein named Tax that is responsible for enhancing viral expression and drives cell transformation. Much effort has been invested to dissect the impact of Tax on signal transduction pathways and to identify functional differences between the HTLV Tax proteins that may explain the distinct oncogenic potential of HTLV-1 and HTLV-2. This review summarizes our current knowledge of Tax-1 and Tax-2 with emphasis on their structure, role in activation of the NF-κB (nuclear factor kappa-B) pathway, and interactions with host factors.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma.

          Retrovirus particles with type C morphology were found in two T-cell lymphoblastoid cell lines, HUT 102 and CTCL-3, and in fresh peripheral blood lymphocytes obtained from a patient with a cutaneous T-cell lymphoma (mycosis fungoides). The cell lines continuously produce these viruses, which are collectively referred to as HTLV, strain CR(HTLV(CR)). Originally, the production of virus from HUT 102 cells required induction with 5-iodo-2'-deoxyuridine, but the cell line became a constitutive producer of virus at its 56th passage. Cell line CTCL-3 has been a constitutive producer of virus from its second passage in culture. Both mature and immature extracellular virus particles were seen in thin-section electron micrographs of fixed, pelleted cellular material; on occasion, typical type C budding virus particles were seen. No form of intracellular virus particle has been seen. Mature particles were 100-110 nm in diameter, consisted of an electron-dense core surrounded by an outer membrane separated by an electron-lucent region, banded at a density of 1.16 g/ml on a continuous 25-65% sucrose gradient, and contained 70S RNA and a DNA polymerase activity typical of viral reverse transcriptase (RT; RNA-dependent DNA nucleotidyltransferase). Under certain conditions of assay, HTLV(CR) RT showed cation preference for Mg(2+) over Mn(2+), distinct from the characteristics of cellular DNA polymerases purified from human lymphocytes and the RT from most type C viruses. Antibodies to cellular DNA polymerase gamma and anti-bodies against RT purified from several animal retroviruses failed to detectably interact with HTLV(CR) RT under conditions that were positive for the respective homologous DNA polymerase, demonstrating a lack of close relationship of HTLV(CR) RT to cellular DNA polymerases gamma or RT of these viruses. Six major proteins, with sizes of approximately 10,000, 13,000, 19,000, 24,000, 42,000, and 52,000 daltons, were apparent when doubly banded, disrupted HTLV(CR) particles were chromatographed on a NaDodSO(4)/polyacrylamide gel. The number of these particle-associated proteins is consistent with the expected proteins of a retrovirus, but the sizes of some are distinct from those of most known retroviruses of the primate subgroups.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-canonical NF-κB signaling pathway.

            The non-canonical NF-κB pathway is an important arm of NF-κB signaling that predominantly targets activation of the p52/RelB NF-κB complex. This pathway depends on the inducible processing of p100, a molecule functioning as both the precursor of p52 and a RelB-specific inhibitor. A central signaling component of the non-canonical pathway is NF-κB-inducing kinase (NIK), which integrates signals from a subset of TNF receptor family members and activates a downstream kinase, IκB kinase-α (IKKα), for triggering p100 phosphorylation and processing. A unique mechanism of NIK regulation is through its fate control: the basal level of NIK is kept low by a TRAF-cIAP destruction complex and signal-induced non-canonical NF-κB signaling involves NIK stabilization. Tight control of the fate of NIK is important, since deregulated NIK accumulation is associated with lymphoid malignancies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation.

              It has been 30 years since a 'new' leukaemia termed adult T-cell leukaemia (ATL) was described in Japan, and more than 25 years since the isolation of the retrovirus, human T-cell leukaemia virus type 1 (HTLV-1), that causes this disease. We discuss HTLV-1 infectivity and how the HTLV-1 Tax oncoprotein initiates transformation by creating a cellular environment favouring aneuploidy and clastogenic DNA damage. We also explore the contribution of a newly discovered protein and RNA on the HTLV-1 minus strand, HTLV-1 basic leucine zipper factor (HBZ), to the maintenance of virus-induced leukaemia.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                09 September 2013
                2013
                : 4
                : 271
                Affiliations
                [1] 1Department of Life and Reproduction Sciences, University of Verona Verona, Italy
                [2] 2GEMIB laboratory, Center for Medical Research and Molecular Diagnostics Parma, Italy
                [3] 3Department of Surgery, Oncology and Gastroenterology, University of Padua Padua, Italy
                [4] 4Institute for Microbiological Research J-M Wiame, Laboratory of Microbiology, Université Libre de Bruxelles Brussels, Belgium
                Author notes

                Edited by: Akio Adachi, The University of Tokushima Graduate School, Japan

                Reviewed by: Jun-ichi Fujisawa, Kansai Medical University, Japan; Makoto Yamagishi, The University of Tokyo, Japan; Yorifumi Satou, Kumamoto University, Japan

                *Correspondence: Maria G. Romanelli, Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy e-mail: mariagrazia.romanelli@ 123456univr.it
                This article was submitted to Virology, a section of the journal Frontiers in Microbiology.
                Article
                10.3389/fmicb.2013.00271
                3766827
                24058363
                7252c708-da04-4120-9f16-54fe852cfb79
                Copyright © Romanelli, Diani, Bergamo, Casoli, Ciminale, Bex and Bertazzoni.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 July 2013
                : 20 August 2013
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 174, Pages: 14, Words: 0
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                signal transduction,htlv,tax proteins,nf-κb
                Microbiology & Virology
                signal transduction, htlv, tax proteins, nf-κb

                Comments

                Comment on this article