725
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Common Motifs in the Response of Cereal Primary Metabolism to Fungal Pathogens are not Based on Similar Transcriptional Reprogramming

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During compatible interactions with their host plants, biotrophic plant–pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism toward colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus ( Blumeria graminis f.sp. hordei), the corn smut fungus Ustilago maydis, and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment. Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. However, increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during early biotrophy for the three investigated interactions.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Sugar transporters for intercellular exchange and nutrition of pathogens.

          Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.

            Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              THE SHIKIMATE PATHWAY.

              The shikimate pathway links metabolism of carbohydrates to biosynthesis of aromatic compounds. In a sequence of seven metabolic steps, phosphoenolpyruvate and erythrose 4-phosphate are converted to chorismate, the precursor of the aromatic amino acids and many aromatic secondary metabolites. All pathway intermediates can also be considered branch point compounds that may serve as substrates for other metabolic pathways. The shikimate pathway is found only in microorganisms and plants, never in animals. All enzymes of this pathway have been obtained in pure form from prokaryotic and eukaryotic sources and their respective DNAs have been characterized from several organisms. The cDNAs of higher plants encode proteins with amino terminal signal sequences for plastid import, suggesting that plastids are the exclusive locale for chorismate biosynthesis. In microorganisms, the shikimate pathway is regulated by feedback inhibition and by repression of the first enzyme. In higher plants, no physiological feedback inhibitor has been identified, suggesting that pathway regulation may occur exclusively at the genetic level. This difference between microorganisms and plants is reflected in the unusually large variation in the primary structures of the respective first enzymes. Several of the pathway enzymes occur in isoenzymic forms whose expression varies with changing environmental conditions and, within the plant, from organ to organ. The penultimate enzyme of the pathway is the sole target for the herbicide glyphosate. Glyphosate-tolerant transgenic plants are at the core of novel weed control systems for several crop plants.
                Bookmark

                Author and article information

                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in plant science
                Frontiers Research Foundation
                1664-462X
                22 August 2011
                2011
                : 2
                : 39
                Affiliations
                [1] 1simpleDivision of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg Erlangen, Germany
                [2] 2simpleInstitute of Biometry and Population Genetics, Justus Liebig University Giessen, Germany
                [3] 3simpleResearch Center for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Germany
                [4] 4simpleMax Planck Institute for Terrestrial Microbiology Marburg, Germany
                [5] 5simpleFaculty of Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin-Luther-University Halle-Wittenberg Halle, Germany
                [6] 6simpleDepartment of Genetics, Institute of Applied Biosciences, University of Karlsruhe Karlsruhe, Germany
                [7] 7simpleInstitute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Germany
                Author notes

                Edited by: Alisdair Fernie, Max Planck Institute for Plant Physiology, Germany

                Reviewed by: Andreas P. M. Weber, University of Duesseldorf, Germany; Veronica Graciela Maurino, Heinrich-Heine-Universität Düsseldorf, Germany

                *Correspondence: Lars Matthias Voll, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen, Germany. e-mail: lvoll@ 123456biologie.uni-erlangen.de

                Present address: Robin Jonathan Horst, Department of Biology, University of Washington, Seattle, WA, USA; Alexandra Molitor, KWS Saat AG, Einbeck, Germany; Frank Waller, Julius-von-Sachs Institute, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.

                This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

                Article
                10.3389/fpls.2011.00039
                3355734
                22645534
                aa2cad9c-d878-447b-a66b-890de0e53af0
                Copyright © 2011 Voll, Horst, Voitsik, Zajic, Samans, Pons-Kühnemann, Doehlemann, Münch, Wahl, Molitor, Hofmann, Schmiedl, Waller, Deising, Kahmann, Kämper, Kogel and Sonnewald.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 19 May 2011
                : 01 August 2011
                Page count
                Figures: 7, Tables: 4, Equations: 0, References: 56, Pages: 17, Words: 12525
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                maize,colletotrichum graminicola,transcriptome analysis,metabolite analysis,ustilago maydis,barley,compatible interaction,blumeria graminis f.sp. hordei

                Comments

                Comment on this article