3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Omics in Horticultural Crops 

      Omics technologies and breeding of horticultural crops

      edited-book
      , , ,
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

          Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of ∼50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was simulated with a marker spacing of 1 cM. The markers surrounding every 1-cM region were combined into marker haplotypes. Due to finite population size (Ne = 100), the marker haplotypes were in linkage disequilibrium with the QTL located between the markers. Using least squares, all haplotype effects could not be estimated simultaneously. When only the biggest effects were included, they were overestimated and the accuracy of predicting genetic values of the offspring of the recorded animals was only 0.32. Best linear unbiased prediction of haplotype effects assumed equal variances associated to each 1-cM chromosomal segment, which yielded an accuracy of 0.73, although this assumption was far from true. Bayesian methods that assumed a prior distribution of the variance associated with each chromosome segment increased this accuracy to 0.85, even when the prior was not correct. It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor.

            The integration of metabolomics and transcriptomics can provide precise information on gene-to-metabolite networks for identifying the function of unknown genes unless there has been a post-transcriptional modification. Here, we report a comprehensive analysis of the metabolome and transcriptome of Arabidopsis thaliana over-expressing the PAP1 gene encoding an MYB transcription factor, for the identification of novel gene functions involved in flavonoid biosynthesis. For metabolome analysis, we performed flavonoid-targeted analysis by high-performance liquid chromatography-mass spectrometry and non-targeted analysis by Fourier-transform ion-cyclotron mass spectrometry with an ultrahigh-resolution capacity. This combined analysis revealed the specific accumulation of cyanidin and quercetin derivatives, and identified eight novel anthocyanins from an array of putative 1800 metabolites in PAP1 over-expressing plants. The transcriptome analysis of 22,810 genes on a DNA microarray revealed the induction of 38 genes by ectopic PAP1 over-expression. In addition to well-known genes involved in anthocyanin production, several genes with unidentified functions or annotated with putative functions, encoding putative glycosyltransferase, acyltransferase, glutathione S-transferase, sugar transporters and transcription factors, were induced by PAP1. Two putative glycosyltransferase genes (At5g17050 and At4g14090) induced by PAP1 expression were confirmed to encode flavonoid 3-O-glucosyltransferase and anthocyanin 5-O-glucosyltransferase, respectively, from the enzymatic activity of their recombinant proteins in vitro and results of the analysis of anthocyanins in the respective T-DNA-inserted mutants. The functional genomics approach through the integration of metabolomics and transcriptomics presented here provides an innovative means of identifying novel gene functions involved in plant metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenomics--technologies to relieve the phenotyping bottleneck.

              Global agriculture is facing major challenges to ensure global food security, such as the need to breed high-yielding crops adapted to future climates and the identification of dedicated feedstock crops for biofuel production (biofuel feedstocks). Plant phenomics offers a suite of new technologies to accelerate progress in understanding gene function and environmental responses. This will enable breeders to develop new agricultural germplasm to support future agricultural production. In this review we present plant physiology in an 'omics' perspective, review some of the new high-throughput and high-resolution phenotyping tools and discuss their application to plant biology, functional genomics and crop breeding. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and book information

                Book Chapter
                2022
                : 75-90
                10.1016/B978-0-323-89905-5.00024-0
                e2b5c031-d117-4f37-a3c7-539a8c89331d
                History

                Comments

                Comment on this book