0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Plant Cytogenetics and Cytogenomics : Methods and Protocols 

      Plant Cytogenetics: From Chromosomes to Cytogenomics

      other
      , ,
      Springer US

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Polyploidy and genome evolution in plants.

          Plant genomes vary in size and complexity, fueled in part by processes of whole-genome duplication (WGD; polyploidy) and subsequent genome evolution. Despite repeated episodes of WGD throughout the evolutionary history of angiosperms in particular, the genomes are not uniformly large, and even plants with very small genomes carry the signatures of ancient duplication events. The processes governing the evolution of plant genomes following these ancient events are largely unknown. Here, we consider mechanisms of diploidization, evidence of genome reorganization in recently formed polyploid species, and macroevolutionary patterns of WGD in plant genomes and propose that the ongoing genomic changes observed in recent polyploids may illustrate the diploidization processes that result in ancient signatures of WGD over geological timescales.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning and characterization of ribosomal RNA genes from wheat and barley.

            Wheat and barley DNA enriched for ribosomal RNA genes was isolated from actinomycin D-CsCl gradients and used to clone the ribosomal repeating units in the plasmid pAC184. All five chimeric plasmids isolated which contained wheat rDNA and eleven of the thirteen which had barley rDNA were stable and included full length ribosomal repeating units. Physical maps of all length variants cloned have been constructed using the restriction endonucleases Eco Rl, Bam Hl, Bgl II, Hind III and Sal I. Length variation in the repeat units was attributed to differences in the spacer regions. Comparison of Hae III and Hpa II digestion of cereal rDNAs and the cloned repeats suggests that most methylated cytosines in natural rDNA are in -CpG-. Incomplete methylation occurs at specific Bam Hl sites in barley DNA. Detectable quantities of ribosomal spacer sequences are not present at any genomic locations other than those of the ribosomal RNA gene repeats.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis.

              Hybrids derived from wheat (Triticum aestivum L.) × rye (Secale cereale L.) have been widely studied because of their important roles in wheat cultivar improvement. Repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 are usually used as probes in fluorescence in situ hybridization (FISH) analysis of wheat, rye, and hybrids derived from wheat × rye. Usually, some of these repetitive sequences for FISH analysis were needed to be amplified from a bacterial plasmid, extracted from bacterial cells, and labeled by nick translation. Therefore, the conventional procedure of probe preparation using these repetitive sequences is time-consuming and labor-intensive. In this study, some appropriate oligonucleotide probes have been developed which can replace the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 in FISH analysis of wheat, rye, and hybrids derived from wheat × rye. These oligonucleotides can be synthesized easily and cheaply. Therefore, FISH analysis of wheat and hybrids derived from wheat × rye using these oligonucleotide probes becomes easier and more economical.
                Bookmark

                Author and book information

                Contributors
                (View ORCID Profile)
                Book Chapter
                2023
                June 20 2023
                : 3-21
                10.1007/978-1-0716-3226-0_1
                ded7aeed-85f6-4c5b-83eb-91a9c06fd5f6
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,187