18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      The Immunology of Cardiovascular Homeostasis and Pathology 

      Endothelial Cells

      other
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: not found
          • Article: not found

          How leukocytes cross the vascular endothelium.

          Immune responses depend on the ability of leukocytes to move from the circulation into tissue. This is enabled by mechanisms that guide leukocytes to the right exit sites and allow them to cross the barrier of the blood vessel wall. This process is regulated by a concerted action between endothelial cells and leukocytes, whereby endothelial cells activate leukocytes and direct them to extravasation sites, and leukocytes in turn instruct endothelial cells to open a path for transmigration. This Review focuses on recently described mechanisms that control and open exit routes for leukocytes through the endothelial barrier.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting.

            Sprouting angiogenesis requires the coordinated behaviour of endothelial cells, regulated by Notch and vascular endothelial growth factor receptor (VEGFR) signalling. Here, we use computational modelling and genetic mosaic sprouting assays in vitro and in vivo to investigate the regulation and dynamics of endothelial cells during tip cell selection. We find that endothelial cells compete for the tip cell position through relative levels of Vegfr1 and Vegfr2, demonstrating a biological role for differential Vegfr regulation in individual endothelial cells. Differential Vegfr levels affect tip selection only in the presence of a functional Notch system by modulating the expression of the ligand Dll4. Time-lapse microscopy imaging of mosaic sprouts identifies dynamic position shuffling of tip and stalk cells in vitro and in vivo, indicating that the VEGFR-Dll4-Notch signalling circuit is constantly re-evaluated as cells meet new neighbours. The regular exchange of the leading tip cell raises novel implications for the concept of guided angiogenic sprouting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signal transduction by vascular endothelial growth factor receptors.

              VEGFs (vascular endothelial growth factors) control vascular development during embryogenesis and the function of blood vessels and lymphatic vessels in the adult. There are five related mammalian ligands, which act through three receptor tyrosine kinases. Signalling is modulated through neuropilins, which act as VEGF co-receptors. Heparan sulfate and integrins are also important modulators of VEGF signalling. Therapeutic agents that interfere with VEGF signalling have been developed with the aim of decreasing angiogenesis in diseases that involve tissue growth and inflammation, such as cancer. The present review will outline the current understanding and consequent biology of VEGF receptor signalling.
                Bookmark

                Author and book information

                Book Chapter
                2017
                May 13 2017
                : 71-91
                10.1007/978-3-319-57613-8_4
                28667554
                d241e307-092c-4508-88fd-a20dc19c98cd
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,504

                Cited by75