0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Physiology of the Gastrointestinal Tract 

      Pathophysiology Underlying the Irritable Bowel Syndrome

      edited-book
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          Contributions of anterior cingulate cortex to behaviour

          Assessments of anterior cingulate cortex in experimental animals and humans have led to unifying theories of its structural organization and contributions to mammalian behaviour. The anterior cingulate cortex forms a large region around the rostrum of the corpus callosum that is termed the anterior executive region. This region has numerous projections into motor systems, however, since these projections originate from different parts of anterior cingulate cortex and because functional studies have shown that it does not have a uniform contribution to brain functions, the anterior executive region is further subdivided into 'affect' and 'cognition' components. The affect division includes areas 25, 33 and rostral area 24, and has extensive connections with the amygdala and periaqueductal grey, and parts of it project to autonomic brainstem motor nuclei. In addition to regulating autonomic and endocrine functions, it is involved in conditioned emotional learning, vocalizations associated with expressing internal states, assessments of motivational content and assigning emotional valence to internal and external stimuli, and maternal-infant interactions. The cognition division includes caudal areas 24' and 32', the cingulate motor areas in the cingulate sulcus and nociceptive cortex. The cingulate motor areas project to the spinal cord and red nucleus and have premotor functions, while the nociceptive area is engaged in both response selection and cognitively demanding information processing. The cingulate epilepsy syndrome provides important support of experimental animal and human functional imaging studies for the role of anterior cingulate cortex in movement, affect and social behaviours. Excessive cingulate activity in cases with seizures confirmed in anterior cingulate cortex with subdural electrode recordings, can impair consciousness, alter affective state and expression, and influence skeletomotor and autonomic activity. Interictally, patients with anterior cingulate cortex epilepsy often display psychopathic or sociopathic behaviours. In other clinical examples of elevated anterior cingulate cortex activity it may contribute to tics, obsessive-compulsive behaviours, and aberrent social behaviour. Conversely, reduced cingulate activity following infarcts or surgery can contribute to behavioural disorders including akinetic mutism, diminished self-awareness and depression, motor neglect and impaired motor initiation, reduced responses to pain, and aberrent social behaviour. The role of anterior cingulate cortex in pain responsiveness is suggested by cingulumotomy results and functional imaging studies during noxious somatic stimulation. The affect division of anterior cingulate cortex modulates autonomic activity and internal emotional responses, while the cognition division is engaged in response selection associated with skeletomotor activity and responses to noxious stimuli. Overall, anterior cingulate cortex appears to play a crucial role in initiation, motivation, and goal-directed behaviours.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome.

            The mechanisms underlying abdominal pain perception in irritable bowel syndrome (IBS) are poorly understood. Intestinal mast cell infiltration may perturb nerve function leading to symptom perception. We assessed colonic mast cell infiltration, mediator release, and spatial interactions with mucosal innervation and their correlation with abdominal pain in IBS patients. IBS patients were diagnosed according to Rome II criteria and abdominal pain quantified according to a validated questionnaire. Colonic mucosal mast cells were identified immunohistochemically and quantified with a computer-assisted counting method. Mast cell tryptase and histamine release were analyzed immunoenzymatically. Intestinal nerve to mast cell distance was assessed with electron microscopy. Thirty-four out of 44 IBS patients (77%) showed an increased area of mucosa occupied by mast cells as compared with controls (9.2% +/- 2.5% vs. 3.3 +/- 0.8%, respectively; P < 0.001). There was a 150% increase in the number of degranulating mast cells (4.76 +/- 3.18/field vs. 2.42 +/- 2.26/field, respectively; P = 0.026). Mucosal content of tryptase was increased in IBS and mast cells spontaneously released more tryptase (3.22 +/- 3.48 pmol/min/mg vs. 0.87 +/- 0.65 pmol/min/mg, respectively; P = 0.015) and histamine (339.7 +/- 59.0 ng/g vs. 169.3 +/- 130.6 ng/g, respectively; P = 0.015). Mast cells located within 5 microm of nerve fibers were 7.14 +/- 3.87/field vs. 2.27 +/- 1.63/field in IBS vs. controls (P < 0.001). Only mast cells in close proximity to nerves were significantly correlated with severity and frequency of abdominal pain/discomfort (P < 0.001 and P = 0.003, respectively). Colonic mast cell infiltration and mediator release in proximity to mucosal innervation may contribute to abdominal pain perception in IBS patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development.

              The irritable bowel syndrome (IBS) is a common disorder characterized by abdominal pain in the setting of altered perception of viscerosensory stimuli. This so-called visceral hyperalgesia occurs in the absence of detectable organic disease in the peripheral organs and may cause normal or physiologic contractions to be perceived as painful. Although the pathogenesis of IBS remains speculative and is probably multifactorial, a prevailing paradigm is that transient noxious events lead to long-lasting sensitization of the neural pain circuit, despite complete resolution of the initiating event. Neonatal male Sprague-Dawley rats received either mechanical or chemical colonic irritation between postnatal days 8 and 21 and were tested when they became adults. The abdominal withdrawal reflex and the responses of viscerosensitive neurons were recorded during colon distention. Colon irritation in neonates, but not in adults, results in chronic visceral hypersensitivity, with characteristics of allodynia and hyperalgesia, associated with central neuronal sensitization in the absence of identifiable peripheral pathology. These results concur largely with observations in patients with IBS, providing a new animal model to study IBS and validating a neurogenic component of functional abdominal pain that encourages novel approaches to health care and research.
                Bookmark

                Author and book information

                Book Chapter
                2006
                : 1009-1031
                10.1016/B978-012088394-3/50044-1
                ce0367d8-ebb5-4b6b-b6dd-12f5ae087bce
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,127