0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Basic Immunology and Its Clinical Application 

      HLA Genetics for the Human Diseases

      other
      ,
      Springer Nature Singapore

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion.

          Understanding how the immune system affects cancer development and progression has been one of the most challenging questions in immunology. Research over the past two decades has helped explain why the answer to this question has evaded us for so long. We now appreciate that the immune system plays a dual role in cancer: It can not only suppress tumor growth by destroying cancer cells or inhibiting their outgrowth but also promote tumor progression either by selecting for tumor cells that are more fit to survive in an immunocompetent host or by establishing conditions within the tumor microenvironment that facilitate tumor outgrowth. Here, we discuss a unifying conceptual framework called "cancer immunoediting," which integrates the immune system's dual host-protective and tumor-promoting roles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The complete sequence of a human genome*

            Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion base pair (bp) sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million bp of sequence containing 1,956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies. Twenty years after the initial drafts, a truly complete sequence of a human genome reveals what has been missing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Annotation of functional variation in personal genomes using RegulomeDB

              As the sequencing of healthy and disease genomes becomes more commonplace, detailed annotation provides interpretation for individual variation responsible for normal and disease phenotypes. Current approaches focus on direct changes in protein coding genes, particularly nonsynonymous mutations that directly affect the gene product. However, most individual variation occurs outside of genes and, indeed, most markers generated from genome-wide association studies (GWAS) identify variants outside of coding segments. Identification of potential regulatory changes that perturb these sites will lead to a better localization of truly functional variants and interpretation of their effects. We have developed a novel approach and database, RegulomeDB, which guides interpretation of regulatory variants in the human genome. RegulomeDB includes high-throughput, experimental data sets from ENCODE and other sources, as well as computational predictions and manual annotations to identify putative regulatory potential and identify functional variants. These data sources are combined into a powerful tool that scores variants to help separate functional variants from a large pool and provides a small set of putative sites with testable hypotheses as to their function. We demonstrate the applicability of this tool to the annotation of noncoding variants from 69 full sequenced genomes as well as that of a personal genome, where thousands of functionally associated variants were identified. Moreover, we demonstrate a GWAS where the database is able to quickly identify the known associated functional variant and provide a hypothesis as to its function. Overall, we expect this approach and resource to be valuable for the annotation of human genome sequences.
                Bookmark

                Author and book information

                Book Chapter
                2024
                March 12 2024
                : 237-258
                10.1007/978-981-99-9781-7_16
                bc74ef4a-03fe-4904-b35f-165e3bf64d88
                History

                Comments

                Comment on this book