5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Database Systems for Advanced Applications : 28th International Conference, DASFAA 2023, Tianjin, China, April 17–20, 2023, Proceedings, Part III 

      Fintech Key-Phrase: A New Chinese Financial High-Tech Dataset Accelerating Expression-Level Information Retrieval

      other
      , ,
      Springer Nature Switzerland

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hidden Markov models

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recognizing names in biomedical texts: a machine learning approach.

              With an overwhelming amount of textual information in molecular biology and biomedicine, there is a need for effective and efficient literature mining and knowledge discovery that can help biologists to gather and make use of the knowledge encoded in text documents. In order to make organized and structured information available, automatically recognizing biomedical entity names becomes critical and is important for information retrieval, information extraction and automated knowledge acquisition. In this paper, we present a named entity recognition system in the biomedical domain, called PowerBioNE. In order to deal with the special phenomena of naming conventions in the biomedical domain, we propose various evidential features: (1) word formation pattern; (2) morphological pattern, such as prefix and suffix; (3) part-of-speech; (4) head noun trigger; (5) special verb trigger and (6) name alias feature. All the features are integrated effectively and efficiently through a hidden Markov model (HMM) and a HMM-based named entity recognizer. In addition, a k-Nearest Neighbor (k-NN) algorithm is proposed to resolve the data sparseness problem in our system. Finally, we present a pattern-based post-processing to automatically extract rules from the training data to deal with the cascaded entity name phenomenon. From our best knowledge, PowerBioNE is the first system which deals with the cascaded entity name phenomenon. Evaluation shows that our system achieves the F-measure of 66.6 and 62.2 on the 23 classes of GENIA V3.0 and V1.1, respectively. In particular, our system achieves the F-measure of 75.8 on the "protein" class of GENIA V3.0. For comparison, our system outperforms the best published result by 7.8 on GENIA V1.1, without help of any dictionaries. It also shows that our HMM and the k-NN algorithm outperform other models, such as back-off HMM, linear interpolated HMM, support vector machines, C4.5, C4.5 rules and RIPPER, by effectively capturing the local context dependency and resolving the data sparseness problem. Moreover, evaluation on GENIA V3.0 shows that the post-processing for the cascaded entity name phenomenon improves the F-measure by 3.9. Finally, error analysis shows that about half of the errors are caused by the strict annotation scheme and the annotation inconsistency in the GENIA corpus. This suggests that our system achieves an acceptable F-measure of 83.6 on the 23 classes of GENIA V3.0 and in particular 86.2 on the "protein" class, without help of any dictionaries. We think that a F-measure of 90 on the 23 classes of GENIA V3.0 and in particular 92 on the "protein" class, can be achieved through refining of the annotation scheme in the GENIA corpus, such as flexible annotation scheme and annotation consistency, and inclusion of a reasonable biomedical dictionary. A demo system is available at http://textmining.i2r.a-star.edu.sg/NLS/demo.htm. Technology license is available upon the bilateral agreement.
                Bookmark

                Author and book information

                Contributors
                Book Chapter
                2023
                April 15 2023
                : 425-440
                10.1007/978-3-031-30675-4_31
                b7e2b9f7-6fd1-4e59-a077-90b8f3b91ad7
                History

                Comments

                Comment on this book