0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Toll-like Receptors in Health and Disease 

      TLR10 and Its Role in Immunity

      other
      , ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides.

          The Toll-like receptor (TLR)9 is critical for the recognition of immunostimulatory CpG motifs but may cooperate with other TLRs. We analyzed TLR1-10 mRNA expression by using quantitative real-time PCR in highly purified subsets of human PBMC and determined the sensitivity of these subsets to CpG oligodeoxynucleotides (ODN). TLR1 and TLR6 were expressed in all cell types examined. TLR10 was highly expressed in B cells and weakly expressed in plasmacytoid dendritic cells (PDC). High expression of TLR2 was characteristic for monocytes. PDC and B cells expressed marked levels of TLR7 and TLR9 and were directly sensitive to CpG ODN. In CpG ODN-stimulated PDC and B cells, TLR9 expression rapidly decreased, as opposed to TLR7, which was up-regulated in PDC and decreased in B cells. In monocytes, NK cells, and T cells, TLR7 was absent. Despite low expression of TLR9, monocytes, NK cells, and T cells did not respond to CpG ODN in the absence of PDC but were activated in the presence of PDC. In conclusion, our studies provide evidence that PDC and B cells, but not monocytes, NK cells, or T cells, are primary targets of CpG ODN in peripheral blood. The characteristic expression pattern of TLR1-10 in cellular subsets of human PBMC is consistent with the concept that TLR9 is essential in the recognition of CpG ODN in PDC and B cells. In addition, selective regulation of TLR7 expression in PDC and B cells by CpG ODN revealed TLR7 as a candidate TLR potentially involved in modulating the recognition of CpG motifs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toll-like receptors and innate immunity.

            Toll-like receptors have a crucial role in the detection of microbial infection in mammals and insects. In mammals, these receptors have evolved to recognize conserved products unique to microbial metabolism. This specificity allows the Toll proteins to detect the presence of infection and to induce activation of inflammatory and antimicrobial innate immune responses. Recognition of microbial products by Toll-like receptors expressed on dendritic cells triggers functional maturation of dendritic cells and leads to initiation of antigen-specific adaptive immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toll-like receptors in innate immunity.

              K Takeda (2004)
              Functional characterization of Toll-like receptors (TLRs) has established that innate immunity is a skillful system that detects invasion of microbial pathogens. Recognition of microbial components by TLRs initiates signal transduction pathways, which triggers expression of genes. These gene products control innate immune responses and further instruct development of antigen-specific acquired immunity. TLR signaling pathways are finely regulated by TIR domain-containing adaptors, such as MyD88, TIRAP/Mal, TRIF and TRAM. Differential utilization of these TIR domain-containing adaptors provides specificity of individual TLR-mediated signaling pathways. Several mechanisms have been elucidated that negatively control TLR signaling pathways, and thereby prevent overactivation of innate immunity leading to fatal immune disorders. The involvement of TLR-mediated pathways in autoimmune and inflammatory diseases has been proposed. Thus, TLR-mediated activation of innate immunity controls not only host defense against pathogens but also immune disorders.
                Bookmark

                Author and book information

                Book Chapter
                2021
                October 01 2021
                : 161-174
                10.1007/164_2021_541
                34595581
                a46c8afd-6b12-48bc-b733-b8b84df21dfe
                History

                Comments

                Comment on this book