0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Skeletal Muscle Metabolism in Exercise and Diabetes 

      Hepatic Glucose Production during Exercise

      other
      Springer US

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Glucose metabolism during leg exercise in man.

          Arterial concentrations and net substrate exchange across the leg and splanchnic vascular bed were determined for glucose, lactate, pyruvate, and glycerol in healthy postabsorptive subjects at rest and during 40 min of exercise on a bicycle ergometer at work intensities of 400, 800, and 1200 kg-m/min. Rising arterial glucose levels and small decreases in plasma insulin concentrations were found during heavy exercise. Significant arterial-femoral venous differences for glucose were demonstrated both at rest and during exercise, their magnitude increasing with work intensity as well as duration of the exercise performed. Estimated glucose uptake by the leg increased 7-fold after 40 min of light exercise and 10- to 20-fold at moderate to heavy exercise. Blood glucose uptake could at this time account for 28-37% of total substrate oxidation by leg muscle and 75-89% of the estimated carbohydrate oxidation. Splanchnic glucose production increased progressively during exercise reaching levels 3 to 5-fold above resting values at the heavy work loads. Close agreement was observed between estimates of total glucose turnover during exercise based on leg glucose uptake and splanchnic glucose production. Hepatic gluconeogenesis-estimated from splanchnic removal of lactate, pyruvate, glycerol, and glycogenic amino acids-could supply a maximum of 25% of the resting hepatic glucose production but could account for only 6-11% of splanchnic glucose production after 40 min of moderate to heavy exercise. IT IS CONCLUDED THAT: (a) blood glucose becomes an increasingly important substrate for muscle oxidation during prolonged exercise of this type: (b) peripheral glucose utilization increases in exercise despite a reduction in circulating insulin levels: (c) increased hepatic output of glucose, primarily by means of augmented glycogenolysis, contributes to blood glucose homeostasis in exercise and provides an important source of substrate for exercising muscle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids.

            Arterial concentrations and substrate exchange across the leg and splanchnic vascular beds were determined for glucose, lactate, pyruvate, glycerol, individual acidic and neutral amino acids, and free fatty acids (FFA) in six subjects at rest and during 4 h of exercise at approximately 30% of maximal oxygen uptake. FFA turnover and regional exchange were evaluated using (14)C-labeled oleic acid. The arterial glucose concentration was constant for the first 40 min of exercise, but fell progressively thereafter to levels 30% below basal. The arterial insulin level decreased continuously, while the arterial glucagon concentration had risen fivefold after 4 h of exercise. Uptake of glucose and FFA by the legs was markedly augmented during exercise, the increase in FFA uptake being a consequence of augmented arterial levels rather than increased fractional extraction. As exercise was continued beyond 40 min, the relative contribution of FFA to total oxygen metabolism rose progressively to 62%. In contrast, the contribution from glucose fell from 40% to 30% between 90 and 240 min. Leg output of alanine increased as exercise progressed. Splanchnic glucose production, which rose 100% above basal levels and remained so throughout exercise, exceeded glucose uptake by the legs for the first 40 min but thereafter failed to keep pace with peripheral glucose utilization. Total estimated splanchnic glucose output was 75 g in 4 h, sufficient to deplete approximately 75% of liver glycogen stores. Splanchnic uptake of gluconeogenic precursors (lactate, pyruvate, glycerol, alanine) had increased 2- to 10-fold after 4 h of exercise, and was sufficient to account for 45% of glucose release at 4 h as compared to 20-25% at rest and at 40 min of exercise. In the case of alanine and lactate, the increase in precursor uptake was a consequence of a rise in splanchnic fractional extraction. It is concluded that during prolonged exercise at a low work intensity (a) blood glucose levels fall because hepatic glucose output fails to keep up with augmented glucose utilization by the exercising legs; (b) a large portion of hepatic glycogen stores is mobilized and an increasing fraction of the splanchnic glucose output is derived from gluconeogenesis; (c) blood-borne substrates in the form of glucose and FFA account for a major part of leg muscle metabolism, the relative contribution from FFA increasing progressively; and (d) augmented secretion of glucagon may play an important role in the metabolic adaptation to prolonged exercise by its stimulatory influence on hepatic glycogenolysis and gluconeogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased epinephrine response and inaccurate glucoregulation in exercising athletes.

              Epinephrine responses to insulin-induced hypoglycemia have indicated that athletes have a higher adrenal medullary secretory capacity than untrained subjects. This view was tested by an exercise protocol aiming at identical stimulation of the adrenal medulla in the two groups. Eight athletes (T) and eight controls (C) ran 7 min at 60% maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. Plasma epinephrine both at rest and at identical relative work loads [110% VO2max: 8.73 +/- 1.51 (T) vs. 3.60 +/- 1.09 mmol X l-1 (C)] was higher [P less than 0.05) in T than in C. Norepinephrine, as well as heart rate, increased identically in the two groups, indicating identical sympathetic nervous activity. Lactate and glycerol were higher in T than in C after running. Glucose production peaked immediately after exercise and was higher in T than in C. Glucose disappearance increased less than glucose production and was identical in T and C. Accordingly plasma glucose increased, more in T than in C (P less than 0.01). In T glucose levels approached the renal threshold greater than 20 min postexercise. Glucose clearance increased less in T than in C during exercise and decreased postexercise to or below (T, P less than 0.05) basal levels, despite increased insulin levels. Long-term endurance training increases responsiveness of the adrenal medulla to exercise, indicating increased secretory capacity. During maximal exercise this may contribute to higher glucose production, lower clearance, more inaccurate glucoregulation, and higher lypolysis in T compared with C.
                Bookmark

                Author and book information

                Book Chapter
                1998
                : 117-127
                10.1007/978-1-4899-1928-1_11
                9781319
                963f00b9-c88d-4e9d-a1ce-c70d5002aad9
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,811

                Cited by3